| 研究生: |
蔡晧謙 Tsai, Hao-Chain |
|---|---|
| 論文名稱: |
使用頻域等化之單載波時空區塊編碼 Single-Carrier Space-Time Block Codes with Frequency Domain Equalization |
| 指導教授: |
張名先
Chang, Ming-Xian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 時空區塊編碼 、頻域等化 |
| 外文關鍵詞: | spce-time block codes, frequency domain equalization |
| 相關次數: | 點閱:154 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
2002年,美國聯邦通訊委會(FCC)決定釋放3.6~10.1GHz頻寬供商業用途,這也意味著寬頻與高傳輸率系統的普及是未來的趨勢。然而,對於高資料傳輸速率而言,多重路徑通道會導致時散效應並使得每個傳送訊號受到許多時刻之前的訊號干擾。針對符際間干擾(ISI),或頻率選擇性衰減現象,系統需要閥(tap)係數數目會隨著通道延遲擴散(delay spread)成長而增加的時域等化器,而傳統的時域等化器也很可能因為需要的閥係數數目增加而具有相當高的複雜度。 在此論文中,首先我們討論頻域等化之單載波區塊傳送,以避免使用複雜的時域等化器。類似於正交分頻多工傳送,頻域等化相較於時域等化有較低的複雜度。單載波區塊傳送也會避免高的峰值對平均功率比(PAR)。更進一步,我們考慮此系統加上時空區塊編碼技術,其中討論如何運用兩根天線間資料序列的排列,使得接收端具有低的偵測複雜度。最後,在實際情況下的通道估測我們採用最小平方(LSF)方法來實現。
Abstract
In 2002, FCC decided to release 3.6~10.1 GHz spectrum for commercial use, and this indicates that future communication systems is of wideband and high transmission rate. However, for high data rate transmission the multipath channel results in time dispersive phenomenon and causes each symbol interfered by lots of symbols several time periods ago. For such intersymbol interference (ISI), or frequency-selective fading, the system needs complex time-domain equalization (TDE), for which the number of tap coefficients increases with the channel delay spread, and conventional time-domain equalization (TDE) may be of high complexity since the necessary number of tap coefficients increases with the channel delay spread. In this thesis, to avoid the complex time-domain equalization in the multipath channel, we first study the single-carrier block transmission with frequency-domain equalization (FDE). Similar to the orthogonal frequency-division multiplexing (OFDM) transmission, frequency-domain equalization has lower complexity than time-domain equalization. The SC block transmission also avoids the problem of high peak to average power ratio (PAPR) that occurs in OFDM transmission. We further consider SC block transmission with space time block coding (STBC), in which we study how to use permutation on the data sequences of the two antennas such that the receiver could have low-complexity data detection. Practical channel estimation based on a least square fitting (LSF) approach is also considered.
[1] Y. Li and X. Huang, “The Simulation of Independent Rayleigh Faders,“ IEEE Trans. Commun., vol. 50, no. 9, pp. 1503-1514. Sep. 2002
[2] W. C. Jakes, Ed., Microwave Mobile communications. New York: Wiley,1974.
[3] J. R. Foerster, et al., “Channel Modeling Sub-committee Report Final,” IEEE P802.15-02/490r1-SG3a, Nov. 2002.
[4] A. F. Molisch, J. R. Foerster and M. Pendergrass, „Channel Models for Ultrawideband Personal Area Networks,” IEEE Wireless Commun., vol. 10, no. 6, pp. 14-21, Dec. 2003
[5] A. Saleh and R. Valenzuela, “A Statistical Model for Indoor Multipath Propagation Channels,” IEEE JSAC, vol. SAC-5, no. 2, Feb. 1987, pp. 128-37.
[6] M. X. Chang and Y. T. Su, “2-D regression channel estimation for equalizing OFDM signals,” Proc IEEE 51th Vehicular Technology Conference, Tokyo, pp. 240-244, May 2000.
[7] M. X. Chang and Y. T. Su, “Model-based channel estimation for equalizing OFDM signals,” IEEE Trans. Commun., vol. 50, pp. 540-544, Apr. 2002.
[8] Z. Wang, X. Ma and G. B. Giannakis, “OFDM or Singl-Carrier Block Transmissions?,” IEEE Trans. Commun., vol. 52, no. 3, pp. 380-394, Mar 2004
[9] E. Telatar, “Capacity of multi-antenna Gaussian channels”, European Transactions on telecommunications, vol. 10, no. 6, Nov./Dec. 1999, pp. 585-595.
[10] G..J. Foschini and M.J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas”, Wireless Personal Communications, vol. 6, 1998, pp. 311-335.
[11] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun. vol. 16, pp. 1451-1458, Oct. 1998.
[12] V. Tarokh, A. Naguib, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criteria in the presence of channel estimation error, mobility and multiple paths,” IEEE Trans. Commun., vol 47, pp. 199-207, Feb. 1999
[13] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-Time codes for high data rate wireless communication: Performance criterion and code construction”, IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.
[14] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-Time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol 45, pp. 1456-1467, Jul. 1999
[15] B. Vucetic and J. Yuan, Space Time Coding, 1st ed. New York: Wiley, 2003.
[16] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,” IEEE Commun. Mag., vol. 33, pp. 100-109, Feb. 1995.
[17] E. Lindskog and A. Paulraj, ”A Transmit Diversity Scheme for Channels with Intersymbol Interference,” in Proc. Int. Conf. Communications, pp. 307-311, vol. 1, New Orleans, LA, June 2000.
[18] N. Al-Dhahir, “Single-carrier frequency domain equalization for space-time block-coded transmissions over frequency-selective fading channels,” IEEE Commun. Lett., vol. 5, pp. 304-306, July 2001.
[19] S. Zhou and G. B. Giannakis, “Single-Carrier Space-Time Block-Coded Transmissions Over Frequency-Selective Fading Channels,” IEEE Trans. IT., vol. 49, pp. 164-179, Jan. 2003.
[20] D. Falconer, S. L. Ariyavisitakul, A. B. Seeyar, and B. Eidson, “Frequency domain
equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag., 2002, vol. 40, pp. 58-66.
[21] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Baltimore, MD: John Hopkins Univ. Press, 1996. [22] Y. Wang, X. Dong, P. H. Wittke, and S. Mo, “Cyclic Prefixed Single Carrier Transmission in Ultra-wideband Communications,” IEEE Commun., vol. 4, pp. 2862-2866, May. 2005.
[22] Y. Wang, X. Dong, P. H. Wittke, and S. Mo, “Cyclic Prefixed Single Carrier Transmission in Ultra-wideband Communications,” IEEE Commun., vol. 4, pp. 2862-2866, May. 2005.