簡易檢索 / 詳目顯示

研究生: 蔡承瑋
Tsai, Cheng-Wei
論文名稱: 以電紡絲法製備聚乙烯醇纖維及其微結構鑑定
Preparation of poly(vinyl alcohol) fibers via electrospinning and microstructure characterization
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 123
中文關鍵詞: 聚乙烯醇電紡絲電場模擬逐步升溫回火
外文關鍵詞: PVA, electrospinning, electric field stimulation, step-wise annealing
相關次數: 點閱:74下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電場模擬的結果顯示提高針數與增加針距皆會使針底電場強度下降,且兩側電場強度較中間位置大而得到一不均勻之電場分佈,但可藉由調整針長改變針底電場強度而得到較均勻之電場強度分佈。

    本研究使用蒸餾水為溶劑,以電紡絲法製備聚乙烯醇纖維,並探討在不同濃度與操作電壓時,Taylor cone、液柱形態、液柱直徑 (dj)及纖維直徑 (df)的變化。研究顯示改變電壓 (V)與黏度 (ηo)對df 及dj 有以下的scaling law 關係:dj~V-0.04、df~V-0.07 、dj~ηo0.13、df~ηo0.53。
    經由DSC、WAXD與SAXS分析,於DSC結果中顯示PVA纖維容易吸水且順向性纖維膜熔點較非順性纖維高,逐步升溫回火可改變纖維內晶體結構,研究發現升溫回火過程中,分子鏈會重組而排列成較具規則性之晶體,結晶區厚度持續上升至200 oC開始變薄,纖維膜於升溫回火至熔點後仍可藉由2D SAXS檢測出孔洞之散射峰。
    提高針數能有效增加電紡所得纖維產量,增加針距會使所收集的圖樣較為完整。

    The electric field stimulation results showed that increasing needle number and needle’s separation would decrease the electric field intensity around the needle end. The electric field intensity at sides was larger than the center and it would generate an asymmetrical electric field distribution. However, we can adjust the needle length to obtain a symmetrical electric field distribution.
    Distilled water was used as a solvent to prepare poly(vinyl alcohol) solutions with different concentrations for electrospinning. The effects of applied voltage (V) and solution viscosity (ηo) on the Taylor cone, jet length, jet diameter (dj) and fiber diameter (df) were investigated. The scaling laws among dj ,df and V, ηo were derived to be:dj~V-0.04、df~V-0.07 、dj~ηo0.13、df~ηo0.53.
    Wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and differential scanning calorimeter (DSC) analyses were used to characterize the as-spun fibers, DSC results showed that the PVA fibers were apt to absorb water and the melting temperature of aligned fibers were slightly higher than that of randomly distributed fibers. Step-wise annealing on the as-spun fibers would alter the lamellar structure. During step-wise annealing, the polymer chain would reform to an ordered crystal and the crystal thickness would increase. After heating the fiber mat above the melting temperature, there still existed a zero angle SAXS scattering, attributed to the presence of voids.
    Increasing the needle number would effectively raise the fiber yield. Increasing the needle separation would obtain a more complete pattern.

    摘要 ………………………………………………………………… i Abstract ………………………………………………………………… ii 致謝 ………………………………………………………………… iii 目錄 ………………………………………………………………… iv 表目錄 ………………………………………………………………… vi 圖目錄 ………………………………………………………………… vii 符號 ………………………………………………………………… xi 一、 前言................................................................................................. 1 二、 簡介................................................................................................. 2 2.1 電場......................................................................................... 2 2.2 有限元素分析法..................................................................... 3 2.3 電紡絲模式............................................................................. 3 2.4 電紡絲實驗觀察..................................................................... 5 三、 文獻回顧......................................................................................... 7 3.1 聚乙烯醇........…..................................................................... 8 3.2 PVA性質介紹…..................................................................... 8 3.3 PVA相關電紡絲..................................................................... 8 3.4 電紡絲相關電場模擬............................................................. 10 四、 實驗................................................................................................. 29 4.1 實驗藥品................................................................................. 29 4.2 電紡絲儀器與材料................................................................. 29 4.3 實驗步驟................................................................................. 32 4.4 電場模擬設備與實驗步驟…….…........................................ 38 五、 結果與討論…….…........................................................................ 42 5.1 電場模擬……………………….…........................................ 42 5.2 單根針電紡絲………………………..................................... 46 5.3 多根針電紡絲………………………..................................... 54 六、 結論…….…................................ ................................................... 108 七、 參考文獻…….…...................... …................................................ 109 八、 自述………………………………………………………………. 112 九、 附錄……………………………………………………………….. 113

    [1] C. Douglas, Giancoli, “Physics for Scientists & Engineers.” 3rd Edition, Prentice Hall, p.559, 2000.
    [2] H. Pirjo, S. Lasse, U. Jari, K. Lauri, H Ali, “Exploitation of electric field in controlling of nanofibre spinning process.” Polymer Engineering & Science, 47, 2065 (2007).
    [3] 林坤賢, “以電紡絲法製備PBO纖維”, 國立成功大學碩士論文, (2005).
    [4] 洪崇豪, 以電紡絲法製備彈性奈米SBS纖維膜, 國立成功大學碩士論文, (2004).
    [5] T. Inoue, M. Komatsu, K. Kawanishi, “Thermodynamic consideration of the sol-gel transition in polymer solution.” Polymer, 28, 980 (1987).
    [6] J. D. Cho, W. S. Lyoo, S. N. Chvalun, J. Blackwell, “X-ray analysis and molecular modeling of poly(vinyl alcohol)s with different stereoregularities.” Macromolecules, 32, 6236 (1999).
    [7] C. M. Hassan, N. A. Peppas, “Structure and morphology of freeze/thawed PVA hydrogels.” Macromolecules, 33, 2472 (2000).
    [8] R. Endo, S. Amiya, M. Hikosaka, “Conditions for melt crystallization without thermal degradation and equilibrium melting temperature degradation and equilibrium melting temperature.” Journal of Macromolecular Science, Part B, 3,793 (2003).
    [9] J. Zeleny, “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces.” Journal of Physical Review, 3, 69 (1914).
    [10] A. Formhals, US patent No. 1975504 (1934).
    [11] D. H. Reneker, I. Chun, “Nanometer diameter fibres of polymer,
    produced by electrospinning.” Nanotechnology, 7, 216 (1996).
    [12] L. Yao, T. W. Haas, A. Guiseppi-Elie, G. L. Bowlin , D. G. Simpson, G. E. Wnek, “Electrospinning and stabilization of fully hydrolyzed poly(vinyl alcohol) fibers.” Chemistry of Materials, 9, 15 (2003).
    [13] C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, “Study on morphology of electrospun poly(vinyl alcohol) mats.” European Polymer Journal, 41, 423 (2005).
    [14] A. Koski, K. Yim, S. Shivkumar, A. Koski, “Effect of molecular weight on fibrous PVA produced by electrospinning.” Materials Letters, 58, 493 (2004).
    [15] S. L. Shenoy, W. D. Bates, H. L. Frisch, G. E. Wnek, “Role of
    chain entanglements on fiber formation during electrospinning of
    polymer solutions: good solvent, non-specific polymer-polymer
    interaction limit.” Polymer, 46, 3372 (2005).
    [16] H. B. Wang, M. E. Mullins, J. M. Cregg, A. Hurtado, M. Oudega, M. T. Trombley, R. J. Gilber, “Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications.” Journal of Neural Engineering, 6, 016001 (2009).
    [17] Q. Wu, N. Chen, Q. Wang, “Crystallization behavior of melt-spun
    poly(vinyl alcohol) fibers during drawing process.” Journal of Polymer
    Research, 17, 903 (2010).
    [18] W. S. Lyoo, J. H. Kim, K. Koo, J. S. Lee, S. S. Kim, W. S. Yoon, B. C. Ji, I. C. Kwon, C. J. Lee, “Effect of stereosequences on crystallinity and properties of zone-drawn poly(vinyl alcohol) microfibrils.” Journal of Polymer Science: Part B: Polymer Physics, 39, 1263 (2001).
    [19] I. Krucińska, A. Komisarczyk, M. Chrzanowski, E. Gliścińska, H. Wrzosek, “Electrostatic field in electrospinning with a multicapillary head – modelling and experiment.” Fibers & Textiles in Eastern Europe, 74, 38 (2009).
    [20] F. L. Zhou, R. H. Gong, I. Porat, “Needle and needleless electrospinning for nanofibers.” Journal of Applied Polymer Science, 115, 2591 (2010).
    [21] H. Niu, T. Lin, X. Wang, “Needleless electrospinning. I. a comparison of cylinder and disk nozzles.” Journal of Applied Polymer Science, 114, 3524 (2009).

    下載圖示 校內:2012-08-23公開
    校外:2013-08-23公開
    QR CODE