簡易檢索 / 詳目顯示

研究生: 張建賓
Jhang, Jian-Bin
論文名稱: 窄頻物聯網之細胞搜尋演算法
Cell Identity Detection Algorithm for NB-IoT
指導教授: 陳昭羽
Chen, Chao-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 60
中文關鍵詞: 基地台搜尋窄頻物聯網同步正交分頻多工
外文關鍵詞: Cell search, NB-IoT, OFDM, synchronization
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 窄頻物聯網是新的蜂窩式網路技術,是由第三代合作夥伴計畫所提出的通訊系統標準。窄頻物聯網下行鏈路使用正交分頻多工技術,然而正交分頻多工系統有對時間與頻率偏移敏感的缺點,例:載波偏移導致子載波之間失去正交性。細胞搜尋在下行鏈路中是非常重要的一個環節,包含了時間上的同步和頻域上的同步還有搜尋細胞基地台,窄頻物聯網系統利用兩組同步訊號作為細胞搜尋與同步使用,包含窄頻主同步訊號和窄頻輔同步訊號。由於窄頻物聯網的使用者裝置具有低複雜度的需求。我們在此篇論文針對細胞搜尋提出低複雜度的演算法。藉由同步序列的特性,提出分群的作法減少搜尋次數,因而減少運算複雜度,我們提供了不同複雜度底下的效能模擬結果,並透過參數的選擇,提供複雜度與效能間的取捨。

    Narrowband internet-of-things (NB-IoT) is a new cellular technology introduced by the 3rd generation partnership project (3GPP). NB-IoT downlink uses orthogonal frequency division multiplexing (OFDM) technique. It is well-known that OFDM system is sensitive to the timing and frequency offset, e.g. the carrier offset causes loss of orthogonality between subcarriers. Hence, synchronization is a very important part of the downlink transmission. Synchronization procedure includes time synchronization and frequency synchronization as well as the cell search. The frequency offset is caused by the mismatch of oscillators between transmitter and receiver. In the 3GPP NB-IoT system. Two synchronization signals are used including narrowband primary synchronization signal (NPSS) and narrowband primary synchronization signal (NSSS). The user equipment (UE) of NB-IoT has to meet the requirement of low complexity. In this thesis, we propose a low-complexity algorithm for cell search according to the property of the synchronization sequences. The Grouping Method is proposed to reduce the number of search processes. Thus, it reduces the computational complexity. We provide performance evaluation for different complexity-reduction methods. By taking different values of parameters, we provide a trade-off between complexity and performance.

    摘要v Extended Abstract vii 致謝xv Table of Contents xvii List of Figures xix List of Tables xxi 1 介紹1 1.1 研究背景及動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 章節組織. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 正交分頻多工系統及3GPP NB-IoT架構3 2.1 正交分頻多工系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 NB-IoT 架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 NB-IoT佈署. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 3GPP NB-IoT訊框架構. . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 下行鏈路同步信號. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 Zadoff-Chu序列. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 主要同步訊號. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.3 窄頻主要同步訊號. . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.4 窄頻輔同步訊號. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 文獻中同步與初始細胞搜尋的作法17 3.1 Legacy Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Differential method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 Symmetric method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Partial method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 本論文提出的搜尋細胞與訊框時間之方法25 4.1 循環位移分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 分群作法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 累計作法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.1 Autoaggressive (AR) . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3.2 Signal Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.3 Hybrid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 模擬環境與模擬結果分析41 5.1 模擬環境與參數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.1 單次模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.2 累計模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 結論與未來展望55 Bibliography 57

    [1] Y. P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship, J. Bergman, and H. S. Razaghi, “A primer on 3GPP narrowband internet of things,” IEEE Commun. Mag., vol. 55, no. 3, pp. 117–123, Mar. 2017.
    [2] Huawei, “NB-IoT enabling new business opportumities,” White Paper, 2015.
    [3] Krasowski, Piotr and Troha, Douglas, “Wireless system design: NB-IoT downlink simulator,” M.S. thesis, Depart. of Eng. Sci., Uppsala University, Sweden, Jun. 2017.
    [4] M. Sandell, J. J. van de Beek, and per Ola Borjesson, “Timing and frequency synchronization in OFDM systems using the cyclic prefix,” in Proc. IEEE Int. Symp. Synchronization, Apr. 1995, pp. 16–19.
    [5] T. Yingming and Z. Guodong, “Time and frequency synchronization for 3GPP long term evolution systems,” in Proc 2007 IEEE 65th Veh. Technol. Conf. - VTC2007- Spring, Dublin, Ireland, Apr. 2007, pp. 1727–1731.
    [6] S. N. Nazar and A. Haghighat, “Optimized primary synchronization sequences for dedicated MBMS in LTE E-UTRAN,” Inter Digital Commun., pp. 1–4, Jan. 2008.
    [7] F. Schuh, “LTE:der mobilfunk der zukunft synchronization and cell search,” Ausgewahlte Kapitel der Nachrichtentechnik, WS 2009/2010, Feb. 2010.
    [8] H. Wang, Z. Deng, X. Gao, and X. You, “Optimization and efficient detection of primary synchronization signal for multi-beam satellite-LTE systems,” Int. J. Satell. Commun. Netw., vol. 34, no. 2, pp. 115–129, Mar. 2016.
    [9] S.-L. Su, Y.-C. Lin, and Y.-J. Fan, “Joint sector identity and integer part of carrier frequency offset detection by phase-difference in long term evolution cell search process,” IET Commun., vol. 7, no. 10, pp. 950–959, Jul. 2013.
    [10] P.-Y. Tsai and H.-W. Chang, “A new cell search scheme in 3GPP long term evolution downlink OFDMA systems,” in Proc Wireless Commun. & Signal Process., 2009. WCSP 2009. Int. Conf., Nanjing, China, 2009, pp. 1–5.
    [11] D.-B. Lin, J.-C. Hsieh, and H.-P. Lin, “Improved joint correlated detection in cell search and synchronization procedure in 3GPP LTE downlink system,” in Proc Anti-Counterfeiting, Security and Identification (ASID), 2012 Int. Conf., Taipei, Taiwan, Oct. 2012, pp. 1–5.
    [12] C.-Y. Chu, I.-W. Lai, Y.-Y. Lan, and T.-D. Chiueh, “Efficient sequential integer CFO and sector identity detection for LTE cell search,” IEEE Commun. Lett., vol. 3, no. 4, pp. 389–392, 2014.
    [13] Y.-C. Lin, S.-L. Su, and Y.-J. Fan, “Joint sector ID and ICFO detection by using partial correlation scheme in LTE cell search process,” IEEE Pers. Commun., vol. 70, no. 4, pp. 1603–1621, Aug. 2013.
    [14] M. J. Shim, J. S. Han, H. J. Roh, and H. J. Choi, “A frequency synchronization method for 3GPP LTE OFDMA system in TDD mode,” in Proc Commun. and Inform. Technol., 2009. ISCIT 2009. 9th Int. Symp., Icheon, South Korea, Sep. 2009, pp. 864–868.
    [15] Huawei Incorporated, “On cell search and system acquisition time improvements,” 3GPP TSG RAN WG1 Meeting #89, Tech. Rep. R1-1707027, May 2017.
    [16] ——, “NB-PSS evaluation,” 3GPP TSG RAN WG1 Ad-Hoc Meeting #2, Tech. Rep. R1-161958, Mar. 2016.
    [17] Qualcomm Incorporated, “NB-PSS and NB-SSS design (revised),” 3GPP TSG RAN WG1 NB- Ad-Hoc Meeting #2, Tech. Rep. R1-161981, Mar. 2016.
    [18] E. J‥orgensen, “Cell acquisition and synchronization for unlicensed NB-IoT,” M.S. thesis, Dept. of Elect. Eng., Link‥oping University, Sweden, Feb. 2017.
    [19] C.-Y. Chen, “The primary synchronization sequences in LTE,” technical report, Dept. of Eng. Sci., National Cheng Kung University, Tainan, Taiwan, May 2018.
    [20] S. Stefania, B. Matthew, and T. Issam, Synchronization and cell search,” in LTE-the UMTS Long Term Evolution: from theory to practice 2th ed. Wiley, 2011, pp. 151–164.
    [21] R. Frank, S. Zadoff, and R. Heimiller, “Phase shift pulse codes with good periodic correlation properties,” IRE Trans. Info. Theory, vol. IT-8, no. 6, pp. 381–382, Oct. 1962.
    [22] D. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Info. Theory, vol. IT-18, no. 4, pp. 531–532, Jul. 1972.
    [23] B. M. Popovic and F. Berggren, “Primary synchronization signal in E-UTRA,” in Proc. IEEE Int. Symp. on Spread Spectrum Tech. and Applicat, Bologna, Italy, Aug. 2008, pp. 426–430.
    [24] D. Sarwate, “Bounds on crosscorrelation and autocorrelation of sequence,” IEEE Trans. Info. Theory, vol. IT-25, no. 6, pp. 720–724, Nov. 1979.
    [25] B. M. Popovic, “Generalized chirp-like polyphase sequences with optimum correlation properties,” IEEE Trans. Info. Theory, vol. 38, no. 4, pp. 1406–1409, Jul. 1992.
    [26] S. Beyme and C. Leung, “Efficient computation of DFT of Zadoff-Chu sequences,” Electron. Lett., vol. 45, no. 9, pp. 461–462, Apr. 2009.
    [27] 3GPP TS 36.211, “Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation,” V14.5.0 , Dec. 2017.
    [28] A. Ali, S. Member, W. Hamouda, and S. Member, “On the cell search and initial synchronization for NB-IoT LTE systems,” IEEE Commun. Lett., vol. 21, no. 8, pp. 1843–1846, Aug. 2017.
    [29] 3GPP TS 36.104, “Base station (BS) radio transmission and reception,” V8.4.0 , Dec. 2008.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE