| 研究生: |
趙奎驊 Chao, Kuei-Hua |
|---|---|
| 論文名稱: |
利用傳統培養方法及分子生物方法建立分解多環芳香族碳氫化合物的微生物社會結構並探討其重要分解菌群的角色 Polyphasic Approaches for Determining the Structure of PAH-Degrading Community and the Role of Dominant Population |
| 指導教授: |
曾怡禎
Tseng, I-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 多環芳香族碳氫化合物 、PAHs分解菌 、穩定同位素標定法 、末端螢光片段限制酵素片段長度多型性分析法 |
| 外文關鍵詞: | Terminal-restriction fragment, Stable-isotope probing, PAHs degrading bacteria community, Polycyclic aromatic hydrocarbons |
| 相關次數: | 點閱:182 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石油組成成分中具有許多的碳氫化合物,會對自然環境造成傷害。其中多環芳香族碳氫化合物(Polycyclic aromatic hydrocarbons, PAHs)因其不易自然降解,且生物毒性較高,成為許多學者研究的主題,近來已有許多文獻在探討其代謝菌群以及其代謝路徑。而在此一類研究中,culture-independent approach利用16S rRNA gene序列的比對,不須經由培養過程,即可快速獲得菌群的分類資訊並建立PAHs相關分解菌群的資料庫,但其所能提供的有關生理代謝方面的資訊卻相當少。為了能得到直接證據回答”Who eat what”,穩定同位素標定法(Stable-isotope probing, SIP)技術開始廣泛應用在環境微生物研究上,其可以同時得到有關微生物基質代謝以及分類學上的資訊。本實驗中,利用優厚培養的方法建立PAHs分解菌群的16S rRNA gene的選殖資料庫,並利用SIP的方法,探討naphthalene分解菌群的結構。
在選殖資料庫建立的研究中,Naphthalene的主要分解菌群皆屬於Gammaproteobacteria中的Pseudomonas菌屬(100%)。Anthracene分解菌群主要分布於Alphaproteobacteria(90%)。Phenanthrene的分解菌群則主要分布在Betaproteobacteria(70%)。而Pyrene分解菌群分布較廣,但主要集中在Betaproteobacteria以及Xanthomonadales(64%)。在13C-naphthalene的SIP實驗中,Pseudomonas aeruginosa為其主要菌群,顯示其具有很強的Naphthalene代謝能力,與先前clone library 結果比較,Pseudomonas aeruginosa可能在分解初期有很好的表現量,但隨培養時間的延長,其可能在族群競爭上較不具優勢,以至在優厚培養的clone library中,所佔比例較少。由實驗結果可知,clone library的建立可有效的迅速掌握PAHs分解菌群的資料,但其無法提供有關代謝速率優勢上的資訊。而利用SIP技術,可正確回答”Who eat what”的問題。
Crude oil is a complex mixture of hydrocarbons, and it cause lot of environment pollution. Polycyclic aromatic hydrocarbons, PAHs, are one class of hazardous organic chemicals in crude oil mixture. They are difficult to be degraded in the natural environment and have more toxicity. In this study, we used the method of enrich culture to build 16S rRNA gene database of PAHs degrading bacteria community and also used the SIP to discuss the community structure of naphthalene in environmental soil samples.
In the 16S rRNA gene database of PAHs degrading bacteria, all of the dominant naphthalene degrading bacteria belong to the genus of Pseudomonas of γ-proteobacteria. Anthracene degrading bacteria and Phenanthrene degrading bacteria belong to the α-proteobacteria (90%) and β-proteobacteria (70%), individually. Others are pyrene degrading bacteria, which are the Xanthomonadales and the class of β-proteobacteria (64%). In the result of 13C-naphthalene SIP, Pseudomonas aeruginosa is the dominant bacterium, and show it has the stroungly ablity to degrade naphthalene. Compare with the 16S rRNA gene clone library of naphthalene enrich culture (there is only 5% belong to Pseudomonas aeruginosa), Pseudomonas aeruginosa may has better growth rate in primary stage, but it has little competitive advantage in later stage. The result presented here provide that the building of 16S rRNA gene clone library database can fast get the information of PAHs degrading bacteria community structure, but it can’t provide the information about the metabolism capabilities. And using the tecology of SIP, we can get this information and answer the question “who eat what”.
鄭竹逸。萘分解菌對於芳香族碳氫化合物的分解與菌種基本特性之研究。國立成功大學生物學研究所碩士論文。1997。
簡青紅。利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構。國立成功大學生物學研究所碩士論文。2003。
邱憲明。利用傳統培養方法和分子生物方法探討油污染土壤的微生物社會結構。國立成功大學生物學研究所碩士論文。2004。
林徽鳴。利用變性梯度凝膠電泳與末端螢光標定限制酵素片段長度多型性分析法監測微生物社會之分子指紋變化。國立成功大學生物學研究所碩士論文。2005。
林裕家。利用變性梯度凝膠電泳與即時定量聚合酵素連鎖反應監測油污染場址在復育過程中微生物社會結構之變化。2006。
Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143-169. (1995).
Boschker, H. T. S., Nold, S. C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R. J. & Cappenberg, T. E. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392, 801-805. (1998).
Cadisch, G., Espana, M., Causey, R., Richter, M., Shaw, E., Morgan, J. A., Rahn, C. & Bending, G. D. Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils. Rapid Commun Mass Spectrom 19, 1424-1428. (2005).
Cerniglia, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351-368. (1992).
Chang, J. S., Chou, C. L., Lin, G. H., Sheu, S. Y. & Chen, W. M. Pseudoxanthomonas kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol 28, 137-144. (2005).
Cheng, K. Y., Zhao, Z. Y. & Wong, J. W. Solubilization and desorption of PAHs in soil-aqueous system by biosurfactants produced from Pseudomonas aeruginosa P-CG3 under thermophilic condition. Environ Technol 25, 1159-1165. (2004).
Child, R., Miller, C. D., Liang, Y., Narasimham, G., Chatterton, J., Harrison, P., Sims, R. C., Britt, D. & Anderson, A. J. Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: their association with plant roots. Appl Microbiol Biotechnol 75, 655-663. (2007).
Dyksterhouse, S. E., Gray, J. P., Herwig, R. P., Lara, J. C. & Staley, J. T. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine-sediments. Int J Syst Bacteriol 45, 116-123. (1995).
Ellis, L. B. M., Hou, B. K., Kang, W. J. & Wackett, L. P. The University of Minnesota Biocatalysis/Biodegradation Database: post-genomic data mining. Nucleic Acids Res 31, 262-265. (2003).
Engelhardt, M. A., Daly, K., Swannell, R. P. J. & Head, I. M. Isolation and characterization of a novel hydrocarbon-degrading, Gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J Appl Microbiol 90, 237-247. (2001).
Friedrich, M. W. Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Current Opinion in Biotechnology 17, 59-66. (2006).
Golyshin, P. N. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 52, 901-911. (2002).
Grund, A. D. & Gunsalus, I. C. Cloning of genes for naphthalene metabolism in Pseudomonas putida. J Bacteriol 156, 89-94. (1983).
Haichar, F. Z., Achouak, W., Christen, R. & other authors Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol 9, 625-634. (2007).
Head, I. M., Jones, D. M. & Larter, S. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426, 344-352. (2003).
Head, I. M., Jones, D. M. & Roling, W. F. M. Marine microorganisms make a meal of oil. Nat Rev Micro 4, 173-182. (2006).
Hiromoto, T., Fujiwara, S., Hosokawa, K. & Yamaguchi, H. Crystal structure of 3-hydroxybenzoate hydroxylase from Comamonas testosteroni has a large tunnel for substrate and oxygen access to the active site. J Mol Biol 364, 878-896. (2006a).
Hiromoto, T., Matsue, H., Yoshida, M., Tanaka, T., Higashibata, H., Hosokawa, K., Yamaguchi, H. & Fujiwara, S. Characterization of MobR, the 3-hydroxybenzoate-responsive transcriptional regulator for the 3-hydroxybenzoate hydroxylase gene of Comamonas testosteroni KH122-3s. J Mol Biol 364, 863-877. (2006b).
Jouanneau, Y., Meyer, C., Jakoncic, J., Stojanoff, V. & Gaillard, J. Characterization of a naphthalene dioxygenase endowed with an exceptionally broad substrate specificity toward polycyclic aromatic hydrocarbons. Biochemistry 45, 12380-12391. (2006).
Kahng, H. Y., Nam, K., Kukor, J. J., Yoon, B. J., Lee, D. H., Oh, D. C., Kam, S. K. & Oh, K. H. PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl Microbiol Biotechnol 60, 475-480. (2002).
Kasai, Y., Takahata, Y., Manefield, M. & Watanabe, K. RNA-Based Stable Isotope Probing and Isolation of Anaerobic Benzene-Degrading Bacteria from Gasoline-Contaminated Groundwater. Appl Environ Microbiol 72, 3586-3592. (2006).
Kim, S. J., Kweon, O., Jones, R. C., Freeman, J. P., Edmondson, R. D. & Cerniglia, C. E. Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189, 464-472. (2007).
Kumara, M., Leon, V., De Sisto Materano, A., Ilzins, O. A., Galindo-Castro, I. & Fuenmayor, S. L. Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Z Naturforsch [C] 61, 203-212. (2006).
Lijinsky W.. The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutat. Res. 259:251-261. (1991)
Lu, J., Nakajima-Kambe, T., Shigeno, T., Ohbo, A., Nomura, N. & Nakahara, T. Biodegradation of dibenzothiophene and 4,6-dimethyldibenzothiophene by Sphingomonas paucimobilis strain TZS-7. J Biosci Bioeng 88, 293-299. (1999).
Lu, Y. & Conrad, R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science 309, 1088-1090. (2005).
Ma, Y., Wang, L. & Shao, Z. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8, 455-465. (2006).
Mahanty, B., Pakshirajan, K. & Venkata Dasu, V. Biodegradation of pyrene by Mycobacterium frederiksbergense in a two-phase partitioning bioreactor system. Bioresour Technol. (2007).
Manefield, M., Whiteley, A. S., Griffiths, R. I. & Bailey, M. J. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68, 5367-5373. (2002).
Marshall, A. G. & Rogers, R. P. Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37, 53-59. (2003).
Martinez, P., Agullo, L., Hernandez, M. & Seeger, M. Chlorobenzoate inhibits growth and induces stress proteins in the PCB-degrading bacterium Burkholderia xenovorans LB400. Arch Microbiol. (2007).
Meyer, S., Moser, R., Neef, A., Stahl, U. & Kampfer, P. Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology 145 ( Pt 7), 1731-1741. (1999).
Miller, D. N., Bryant, J. E., Madsen, E. L. & Ghiorse, W. C. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65, 4715-4724. (1999).
Pagnout, C., Frache, G., Poupin, P., Maunit, B., Muller, J. F. & Ferard, J. F. Isolation and characterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strain SNP11: expression in Mycobacterium smegmatis mc(2)155. Res Microbiol 158, 175-186. (2007).
Piskonen, R., Nyyssonen, M., Rajamaki, T. & Itavaara, M. Monitoring of accelerated naphthalene-biodegradation in a bioaugmented soil slurry. Biodegradation 16, 127-134. (2005).
Prince, R. C. (2005).Petroleum Microbiology, pp. 317-336.
Radajewski, S., Ineson, P., Parekh, N. R. & Murrell, J. C. Stable-isotope probing as a tool in microbial ecology. Nature 403, 646-649. (2000).
Rangel-Castro, J. I., Killham, K., Ostle, N., Nicol, G. W., Anderson, I. C., Scrimgeour, C. M., Ineson, P., Meharg, A. & Prosser, J. I. Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol 7, 828-838. (2005).
Samanta, S. K., Chakraborti, A. K. & Jain, R. K. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53, 98-107. (1999).
Schwarz, J. I., Lueders, T., Eckert, W. & Conrad, R. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA. Environ Microbiol 9, 223-237. (2007).
Shi, T., Fredrickson, J. K. & Balkwill, D. L. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. J Ind Microbiol Biotechnol 26, 283-289. (2001).
Sims JL, Sims RC & Matthews JE. Approach to bioremediation of contaminated soil. Haz. Waste Haz. Mater. 7: 117-149. (1990)
Singleton, D. R., Powell, S. N., Sangaiah, R., Gold, A., Ball, L. M. & Aitken, M. D. Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microbiol 71, 1202-1209. (2005).
Singleton, D. R., Sangaiah, R., Gold, A., Ball, L. M. & Aitken, M. D. Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ Microbiol 8, 1736-1745. (2006).
Skowasch, D., Mobus, E. & Maser, E. Identification of a novel Comamonas testosteroni gene encoding a steroid-inducible extradiol dioxygenase. Biochem Biophys Res Commun 294, 560-566. (2002).
Sohngen, N. L. Benzin, Petroleum, Paraffinol und Paraffin als Kohlenstoff- und Energiequelle fur Mikroben. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2 37, 595-609. (1913).
Story, S. P., Kline, E. L., Hughes, T. A., Riley, M. B. & Hayasaka, S. S. Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis strain EPA505. Arch Environ Contam Toxicol 47, 168-176. (2004).
Takizawa, N., Iida, T., Sawada, T., Yamauchi, K., Wang, Y. W., Fukuda, M. & Kiyohara, H. Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82. J Biosci Bioeng 87, 721-731. (1999).
Uchihashi, K., Misawa, T., Takeo, M. & Negoro, S. Mutational analysis of the metabolism of 2,6-naphthalenedisulfonate by Pigmentiphaga sp. NDS-2. J Biosci Bioeng 95, 476-482. (2003).
Vacca, D. J., Bleam, W. F. & Hickey, W. J. Isolation of soil bacteria adapted to degrade humic acid-sorbed phenanthrene. Appl Environ Microbiol 71, 3797-3805. (2005).
Van Hamme, J. D., Singh, A. & Ward, O. P. Recent Advances in Petroleum Microbiology. Microbiol Mol Biol Rev 67, 503-549. (2003).
Warshawsky, D., Ladow, K. & Schneider, J. Enhanced degradation of benzo[a]pyrene by Mycobacterium sp. in conjunction with green alga. Chemosphere. (2007).
Yakimov, M. M. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48, 339-348. (1998).
Yakimov, M. M. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53, 779-785. (2003).
Yakimov, M. M. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54, 141-148. (2004).
Yoon, J. H., Kang, S. J., Kim, W. & Oh, T. K. Pigmentiphaga daeguensis sp. nov., isolated from wastewater of a dye works, and emended description of the genus Pigmentiphaga. Int J Syst Evol Microbiol 57, 1188-1191. (2007).
Zhong, Y., Luan, T., Zhou, H., Lan, C. & Tam, N. F. Metabolite production in degradation of pyrene alone or in a mixture with another polycyclic aromatic hydrocarbon by Mycobacterium sp. Environ Toxicol Chem 25, 2853-2859. (2006).
Zhong, Y., Luan, T., Wang, X., Lan, C. & Tam, N. F. Influence of growth medium on cometabolic degradation of polycyclic aromatic hydrocarbons by Sphingomonas sp. strain PheB4. Appl Microbiol Biotechnol 75, 175-186. (2007).