| 研究生: |
蔡立宏 Tsai, Li-Hung |
|---|---|
| 論文名稱: |
波浪通過系列潛堤之布拉格反射研究 Bragg Reflection of Water Waves by a Series of Submerged Breakwaters |
| 指導教授: |
許泰文
Hsu, Tai-Wen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 202 |
| 中文關鍵詞: | 系列潛堤 、布拉格反射 、波浪 |
| 外文關鍵詞: | Bragg reflection, waves, series submerged breakwaters |
| 相關次數: | 點閱:139 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討波浪通過系列潛堤發生布拉格反射效應。理論解析方面以Miles (1981) 的理論為基礎,推導不同系列潛堤佈置的反射率;數值模式則以Zhang等人 (1999) 混合模式為基礎所發展演進型式緩坡方程式(Evolution Equation for Mild-Slope Equation,EEMSE),模擬波浪通過系列潛堤的布拉格反射。此外,本文進行一系列水工模型試驗,利用試驗結果驗證理論及數值模式計算值。
數值計算結果顯示,在不同波浪入射作用下,各種系列潛堤佈置之反射率變化及布拉格反射趨勢與試驗結果相當一致。以Miles (1981) 的理論為基礎解析值,雖能表現布拉格反射現象及反射率變化趨勢,但因忽略底床變動所造成波速及群波波速變化的影響,在相對堤高較大情況,與試驗結果產生較大誤差,且無法表現反射率尖峰值向低頻平移的現象。
本文針對波浪通過系列潛堤之影響參數進行有系統的探討,包括潛堤高度、潛堤寬度、潛堤長度、潛堤個數、潛堤間距、潛堤間距比、底床坡度、入射水深、入射角度以及波浪週期等。等間距系列潛堤佈置之情況,數值計算與試驗分析結果均發現布拉格反射現象發生在波長為2倍堤距附近,與前人之研究結果一致。本文發展不等潛堤間距的複合式系列潛堤,能增加布拉格反射帶寬,改進等間距系列潛堤波浪頻率受限缺點。布拉格反射強度隨潛堤堤高、堤長、堤數、堤距、底床坡度等增加及入射角愈小而遞增;反射率帶寬及發生反射率尖峰值平移量,則隨潛堤高度、底床坡度的增加及堤數與堤距的減少與碎波發生而增大。以試驗值迴歸之經驗公式,提供代表布拉格反射的參數與各影響因子間的量化關係。
Hydraulic experiments, theory, and numerical model are carried out to study the Bragg reflection for monochromatic waves over a series of submerged breakwaters. Based on Miles’ (1981) theory, the wave reflection coefficient induced by the Bragg scattering for wave propagation over various shapes of multiply composite series submerged breakwaters is first derived. An Evolution Equation for Mild-Slope Equation (EEMSE) is developed on the basis of Hybrid Model (HM) addressed by Zhang et al. (1999) in which the higher-order terms neglected in the mild-slope equation are retained for steep undulate beds. Numerical computation and theoretical results are fairly good compared with experimental results.
By adding the forcing factors, such as bottom slope, bottom curvature, rapidly varying component as well as energy dissipation due to wave breaking into the mild-slope equation, the present is able to solve shoaling, refraction, diffraction, reflection, breaking and energy dissipation phenomena for waves passing over bottom undulation. Miles’ (1981) theoretical solution can demonstrate the tendency of the Bragg reflection and reflection coefficient. But, due to neglecting the influence of wave celerity and group velocity producing by bottom undulation, the discrepancy between theoretical and experimental results becomes larger. It is found that Miles’ theory is unable to predict the shift phenomenon of peak reflection coefficient for larger relative height of breakwaters.
Systematic studies for wave propagating over series submerged breakwaters are conducted. Both numerical calculation and laboratory test results indicate that waves propagate over different combinations of series breakwaters, the Bragg reflection occurs in vicinity of two time of breakwater spacing equal to wave length. The bandwidth of reflection coefficient for the Bragg reflection is increased by unequal spacing of multiply series submerged breakwaters. The density of the Bragg reflection increases with the increase of height, length, number, spacing and bottom slope of submerged breakwaters as well as the decrease of incident angle. The bandwidth and the shift value of the reflection coefficient depend on the height of breakwater and bottom slope. Key features of Bragg reflection influenced by forcing parameters are analyzed with the experimental data, including the peak reflection coefficient of primary harmonic, its corresponding relative breakwater spacing and the bandwidth of in primary harmonic reflection. A regression equation is proposed based on experimental data. Based on the results of the analysis empirical equations are established.
1. Bailard, J.A., Deveries J.W. and Kirby, J.T., “Considerations in Using Bragg Reflection for Strom Eroision Protection,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 118, pp. 62-74 (1992).
2. Bailard, J.A., Deveries, J.W., Kirby J.T. and Guza, R.T., “Bragg Reflection Breakwater:A New Shore Protection Method,” Proceedings of the 22nd International Conference on Coastal Engineering, ASCE, New York, pp. 1702-1715 (1990).
3. Battjes, J.A. and Janssen, J.P.F.M. “Energy Loss and Set-up due to Breaking in Random Waves,” Proceedings of the 16th International Conference on Coastal Engineering, ASCE, Hamburg, Vol. 1, pp. 569-578 (1978).
4. Behrent, L., A Finite Element Model for Water Wave Diffraction including Boundary Absorption and Bottom Friction, Series Paper No. 37, Institute of Hydrodynamics and Hydraulic Engineering, Technique Report, University of Denmark (1985).
5. Belzons, M., Rey, V. and Guazzelli, E., “Subharmonic Bragg Resonance for Surface Water Waves,” Europhysics Letters, Vol. 16, No.2, pp. 189-194 (1991).
6. Berkhoff, J.C.W., “Computation of Combined Refraction-Diffraction,” Proceedings of the 13th International Conference on Coastal Engineering, ASCE, Vancouver, Vol. 1, pp. 705-720 (1972).
7. Booij, N., Gravity Waves on Water with Non-Uniform Depth and Current, Report No. 81-1, Department of Civil Engineering, Delft University of Technique, Delft, The Netherlands (1981).
8. Booij, N., “A Note on the Accuracy of Mild-Slope Equation,” Coastal Engineering, Vol. 7, pp. 191-203 (1983).
9. Chamberlain, P.G. and Poter, D., “The Modified Mild-slope Equation,” Journal of Fluid Mechanics, Vol. 291, pp. 393-407 (1995).
10. Cho, Y. S. and Lee, C., “Resonant Reflection of Waves over Sinusoidally Varying Topographies,” Journal of Coastal Research, Vol. 16, No. 3, pp.870-876 (2000).
11. Dally, W.R., Dean, R.G. and Dalrymple R.A., “Wave Height Variation Across Beaches of Arbitrary Profile,” Journal of Geophysical Research, Vol. 90, No. C6, pp. 11917-11927 (1985).
12. Dalrymple, R.A. and Kirby, J.T., “Water Waves over Ripples,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 112, pp. 309-319 (1986).
13. Davies, A.G., Some Interactions between Surface Waves and Undulations on the Seabed, Institute of Oceanographic Sciences. Report No. 108 (1980).
14. Davies, A.G., “On the Interaction between Surface Waves between Surface Waves and Undulations on the Seabed,” Journal of Marine Research, Vol. 40, pp. 331-368 (1982).
15. Davies, A.G. and Heathershaw, A.D., “Surface Wave Propagation over Sinusoidally Varying Topography,” Journal of Fluid Mechanics, Vol. 144, pp. 419-443 (1984).
16. Davies, A.G., Guazzelli, E. and Belzons, M., “The Propagation over Sinusoidally Varying Topography,” Physical Fluids, Vol. 144, A1 (8), pp. 1331-1340 (1989).
17. Dolan, T. J., Wave Mechanics for the Formation of Multiple Longshore Bars with Emphasis on the Chesapeake Bay, Master thesis, Department of Civil Engineering, University of Delaware (1983).
18. Goda, Y., “A Synthesis of Breaker Indices,” Proceedings of the 17th International Conference on Coastal Engineering, ASCE, Vol. 180, pp. 39-49 (1970).
19. Goda, Y. and Suzuki, Y., “Estimation of Incident and Reflected Waves in Random Wave Experiments,” Proceedings of the 15th International Conference on Coastal Engineering, ASCE, Hawaii, pp. 628-650 (1976).
20. Guazzelli, E., Rey, V. and Belzons, M., “Higher-Order Bragg Reflection of Gravity Surface Waves by Periodic Beds,” Journal of Fluid Mechanics, Vol. 245, pp. 301-317 (1992).
21. Green, A.E. and Naghdi, P.M., “A Nonlinear Theory of Water Waves for Finite and Infinite Depths,” Philosophical Transactions of the Royal Society of London Series A 320, pp. 37-70 (1986).
22. Healy, J.J., “Wave Damping effect of beaches,” Proceedings of International Hydraulics Convention, pp. 213-220 (1953).
23. Hsu, T.W. and Wen, C.C., “A Study of Using Parabolic Model to Describe Wave Breaking and Wide-Angle Wave Incidence,” Journal of the Chinese Institute of Engineers, Vol. 23, No. 4, pp. 515-527 (2000).
24. Hsu, T.W. and Wen, C.C., “A Model Equation Extended to Account for Rapidly Varying Topography,” Ocean Engineering, Vol. 28, pp. 1479-1498 (2001a)
25. Hsu, T. W., and Wen, C.C., “On Radiation Boundary Conditions and Wave Transformation across the Surf Zone,” China Ocean Engineering, Vol. 15, pp. 405-416 (2001b).
26. Isaacson, M., “Measurement of Regular Wave Reflection,” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 117, No. 6, pp. 553-569 (1991).
27. Isobe, M., “A Parabolic Equation Model for Transformation of Irregular Waves due to Refraction, Diffraction and Breaking,” Coastal Engineering in Japan, Vol. 30, pp. 33-47 (1987).
28. Kirby, J.T., “A General Wave Equation for Wave over Rippled Beds,” Journal Fluid Mechanics, Vol. 162, pp. 171-186 (1986).
29. Kirby, J.T., “A Note on Parabolic Radiation Boundary Conditions for Elliptic Wave Calculations,” Coastal Engineering, Vol. 13, pp. 211-218 (1989).
30. Kirby, J.T. and Anton, J.P., “Bragg Reflection of Waves by Artificial Bars,” Proceedings of the 22nd International Conference on Coastal Engineering, ASCE, New York, pp. 757-768 (1990).
31. Lee, C., Park, W.S., Cho, Y.S. and Suh, K.D., “Hyperbolic Mild-Slope Equations Extended to Account for Rapidly Varying Topography,” Coastal Engineering, Vol. 34, pp. 243-257 (1998).
32. Li, B., “An Evolution for Water Waves,” Coastal Engineering, Vol. 23, pp. 227-242 (1994).
33. Liu, Y. and Yue, D.K.P., “On Generalize Bragg Scattering of Surface Waves by Bottom Ripples,” Journal of Fluid Mechanics, Vol. 356, pp. 297-326 (1998).
34. Mansard, E.P.D. and Funke, E.R., “The Measurement of Incident and Reflected Spectra Using a Least Squares Method,” Proceedings of the 17th International Conference on Coastal Engineering, ASCE, Vol. 1, pp. 154-172 (1980).
35. Massel, S.R., “Extended Refraction-Diffraction Equation for Surface Waves,” Coastal Engineering, Vol. 19, pp. 97-126 (1993).
36. Mattioli, F., “Resonant reflection of surface waves by non-sinusoidal bottom undulations,” Applied Ocean Research, Vol. 13, pp. 43-53 (1991).
37. Mei, C. C., “Resonance Reflection of Surface Waves by a Periodic Sandbars,” Journal of Fluid Mechanics, Vol. 152, pp. 315-335 (1985).
38. Mei, C. C., Hara, T. and Naciri, M., “Note on Bragg Scattering of Water Waves by Parallel Bars on the Seabed,” Journal of Fluid Mechanics, Vol. 186, pp. 147-162 (1988).
39. Miche, R., “Mouvements Ondulatories De La Mer En Profondeur Constante Ou Decroissante,” Annales des Ponts et Chaussees, Vol. 3, Issue 363 (1944).
40. Miles, J.W., “Oblique Surface-wave Diffraction by a Cylindrical Obstacle,” Dynamics of Atmospheres and Oceans, Vol. 6, pp. 121-123 (1981).
41. Mizuguchi, M., “An Heuristic Model of Wave Height Distribution in Surf Zone,” Proceedings of the 17th International Conference on Coastal Engineering, Cape Town, South Africa, ASCE, Vol. 1, pp. 278-289 (1980).
42. O’Hare, T.J. and Davies, A.G., “A Comparison of Two Models for Surface-wave Propagation over Rapidly Topography,” Applied Ocean Research, Vol. 15, pp. 1-11 (1993).
43. Porter, D. and Staziker, D.J., “Extensions of the Mild-Slope Equation,” Journal of Fluid Mechanics, Vol. 300, pp. 367-382 (1995).
44. Porter, R. and Porte, D., “Scattered and Free Waves over Periodic Beds,” Journal of Fluid Mechanics, Vol. 483, pp. 129-163 (2003).
45. Radder, A.C., “On the Parabolic Equation Method for Water Wave Propagation,” Journal of Fluid Mechanics, Vol. 95, No. 1, pp. 159-176 (1979).
46. Short, A. D., “Multiple Offshore Bars and Standing Waves,” Journal of Geophysical Research, Vol. 80, pp. 3838-3840 (1975).
47. Sommerfeld, A., Mechanics of Deformable Bodies, Lectures on Theoretical Physics, Academic Press, New York,Vol. 2, (1964).
48. Suh, K.D., Lee, C. and Part, W.S., “Time-Dependent Equations for Wave Propagation on Rapidly Varying Topography,” Coastal Engineering, Vol. 32, pp. 91-117 (1997).
49. Wehausen, J.V. and Laitone, E.V., Surface Waves, Encyclopedia of Physics, Springer-Verlag, Berlin, Vol. 9, pp.469 ff (1960).
50. Webster, W.C. and Wehausen, J.V., “Bragg Scattering of Water Waves by Green-Naghdi Theory,” Z angew Math Phys 46 Special Issue, pp.S566-S583 (1995).
51. Zhang. L, Kim, M.H., Zhang, J. and Edge, B.L., “Hybrid Model for Bragg Scattering of Water Waves by Steep Multiply-sinusoidal Bars,” Journal of Coastal Research, Vol. 15, No. 2, pp. 486-495 (1999).
52. 陳陽益、湯麟武,「波床底床上規則前進重力波之解析」,第十二屆海洋工程研討會論文集,台灣台北,第 270-305 頁 (1990)。
53. 陳陽益,「波形底床上規則重力波之解析(2)」,港灣技術第六期,第 55-83 頁 (1991a)。
54. 陳陽益,「自由表面規則前進重力波傳遞於波形底床上共振現象」,第十五屆全國力學會議論文集,台灣台南,第 289-296 頁 (1991b)。
55. 陳陽益,「規則前進重力波傳遞於波形底床上」,港灣技術第七期,第 17-47 頁 (1992)。
56. 張憲國,「人工沙洲對波浪反射率之影響」,港灣技術,第12卷,第 23-38 頁 (1997)。
57. 張憲國、許泰文、李逸信,「波浪通過人工沙洲之試驗研究」,第十九屆海洋工程研討會論文集,台灣台中,第 242-249 頁 (1997)。
58. 岳景雲、曹登皓、陳丙奇,「波浪通過系列潛堤反射率之研究」,第八屆全國海岸工程學術討論會暨 1997 年海峽兩岸港口及海岸開發研討會論文集(下),中國北京,第 683-690 頁 (1997)。
59. 岳景雲、曹登皓、陳丙奇,「波浪斜向入射正方形複列潛堤反射率之研究」, 第二十屆海洋工程研討會論文集,台灣基隆,第 265-272 頁 (1998)。
60. 岳景雲、曹登皓、江天授、李厚慶,「波浪斜向入射斜坡底床上不透水潛堤之研究」, 第二十一屆海洋工程研討會論文集,台灣新竹, 第 191-197頁 (1999).
61. 郭金棟、陳文俊、陳國書,「雙列潛堤對海灘防治效益之研究」,第二十一屆海洋工程研討會論文集,台灣新竹,第 307-313 頁 (1999)。
62. 岳景雲、曹登皓、翁文凱,「波浪通過不透水雙列潛堤之研究」,2000兩岸港口及海岸開發研討會論文集,台灣新竹,第 112-118 頁 (2000).
63. 張憲國,「斜坡上入反射波的推估方法」, 2000兩岸港口及海岸開發研討會論文集,台灣新竹,第 39-44 頁 (2000)。
64. 陳陽益、郭少谷,「三維波形底床上前進波列之傳遞 I」,第二十二屆海洋工程研討會論文集,台灣高雄,第 9-18 頁 (2000)。