簡易檢索 / 詳目顯示

研究生: 林其用
Lin, Chi-Yong
論文名稱: 摻雜金奈米粒子配向膜之液晶非線性光學特性之研究
Studies of nonlinear properties of liquid crystals with Au-nanoparticle-doped alignment films
指導教授: 傅永貴
Fuh, Y.G. Andy
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 液晶奈米粒子
外文關鍵詞: liquid crystals, Z-scan, nanoparticles
相關次數: 點閱:68下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用Z-scan technique技術研究摻雜金奈米粒子配向膜的液晶之非線性光學特性。Z-scan technique光路架設簡易且對於物質非線性折射係數(光學柯爾係數n2)的量測具高靈敏度,其原理是基於樣品折射率隨光強度變化產生的光自聚焦或自發散效應,會使遠場產生改變,反推而得其相位及折射率的變化。
    我們利用Z-scan technique觀察到,於配向膜掺雜金奈米粒子會大大增加液晶盒的光學柯爾係數,其原因是由於金奈米粒子透過表面電漿共振吸收入射光能量後所產生的熱效應,進而產生自發散效應。我們亦觀察不同的金奈米粒子掺雜濃度與不同的配向膜塗佈次數對液晶盒之非線性係數的影響,實驗成果得到最大的光學柯爾係數可達-4.29×10-4(cm2/W)。不同的入射光偏振分向與不同的環境溫度亦會對n2有所影響。實驗結果顯示在25~40℃間,平行液晶導軸方向的入射光使液晶盒產生自發散效應(n2<0),垂直液晶導軸方向的入射光使液晶盒產生自聚焦效應(n2>0),且於40℃時各自量測最大的光學柯爾係數。其結果可由液晶之非尋常光與尋常光折射率對溫度的關係圖來解釋。
    此外,外加電壓的效應亦被探討,發現隨著電壓的增加,液晶盒 |n2|值會先增大至一最大值,之後再慢慢遞減。且入射光強度越大,最大數值n2所需的電壓越小。這是由於光強度越高,溫度越高,克服Freederickz Transition所需的電壓較低,液晶較易被拉向電場方向。

    This thesis studies the nonlinear properties of liquid crystals (LCs) with the cell substrates being treated with Au-nanoparticle-doped alignment films using the Z-scan technique, which is a simple but powerful technique to measure the optical Kerr constant of materials. The measurement is based on the spatial beam distortion observed in the far field as the laser baem is focused by lens and then pass through the nonlinearly sample which is z-scanned around the focus point.
    Firstly, the use of Au-nanoparticle-doped alignment films in a LC cell to enhance the optical Kerr constant (n2) of LCs due to the thermal effect is demonstrated. The thermal effect is due to the light absorption induced by the localized surface plasmon resonance (LSPR) of the Au-nanoparticles, and induces self-defocusing effect of the sample. Besides, the results show that n2 can be further enhanced by increasing Au-nanoparticle concentration in the alignment film, or the spin coating times. It is found that the maximum n2, which is -4.29×10-4(cm2/W) can be obtained with the uses of optimum parameters.
    Polarization and temperature effects are also studied. The optical nonlinearality of the sample with the LC director parallel and perpendicular to the beam polarization is self-defocusing and self-focusing effect, respectively, at temperatures below the clear point. The maximum |n2 |value is observed at 40℃ for both cases. The results can be properly explained by the use of the temperature-dependent refractive index traces of extra-ordinary and ordinary light. In addition, the nonlinear effect of the sample with an application of an AC voltage (1000 Hz, 0~30 Vp-p) is investigated。It is found that|n2| increases to a maximum value initially, and then decreases with the applied voltage. Also, the higher input intensity requires the lower voltage to observe the maximum value. The phenomenon is due to the fact that the threshold voltage decreases with temperature.

    中文摘要....................I 英文摘要....................III 致謝......................V 目錄 ......................VI 表目錄......................VIII 圖目錄......................IX 第一章 簡介 §1-1 前言....................1 §1-2 液晶簡介...................2 §1-3 奈米材料簡介.................12 第二章 理論 §2-1 液晶物理...................15 §2-2 Z-scan Technique..............28 第三章 實驗樣品製作檢測與光路架設 §3-1 實驗樣品製作.................46 §3-2 實驗樣品之檢測................55 §3-3 Z-scan technique光路的架設........60 第四章 結果與討論 §4-1 配向膜是否掺雜金奈米粒對液晶非線性光學特性的影響.........................62 §4-2 配向膜中金奈米粒濃度與coating 次數對液晶非線性光學特性的影響.........................66 §4-3 不同環境溫度下實驗樣品的Z-scan量測.....68 §4-4 實驗樣品外加電壓下的Z-scan量測.......77 第五章 結論與未來展望 §5-1 實驗結論..................84 §5-2 未來展望..................86 參考文獻......................88

    [1] R A Ganeev, A I Ryasnyansky, Sh R Kamalov, M K Kodirov and T Usmanov, J. Phys. D: Appl. Phys. 34, 1602–1611 (2001)
    [2] Rogério F. Souza, Márcio A. R. C. Alencar, Eid C. da Silva, Mario R. Meneghetti,and Jandir M. Hickmann, Appl. Phys. Lett. 92, 201902 (2008)
    [3] V.A.Karavanskii, V.I.Krasovskii, Proc. of SPIE. 6344, 63442M-1 (2006)
    [4] P. Prem Kiran, B. N. Shivakiran Bhaktha, and D. Narayana Rao, J. Appl. Phys. 96, 6717 (2004)
    [5] Guang Yang, Weitian Wang, Yueliang Zhou, Huibin Lu, Guozhen Yang, and Zhenghao Chen, Appl. Phys. Lett. 81, 3969 (2002)
    [6] Jirakorn THISAYUKTA, Hiroyuki SHIRAKI, Yoshio SAKAI, Takenori MASUMI, Sudarshan KUNDU, Yukihide SHIRAISHI, Naoki TOSHIMA and Shunsuke KOBAYASHI, Jpn. J. Appl. Phys. 43, 5430 (2004)
    [7] Tianyi Zhang, Chengmei Zhong, and Jun Xu, Jpn. J. Appl. Phys. 48, 55002 (2009)
    [8] B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiryan, JETP Lett. 31, 264 (1980)
    [9] B.Bahoadur,“Liquid Crystals-Applications and Uses”, World Scientific Press, Singapore (1990)
    [10] P. J Collings and M. Hird, “Introduction to Liquid Crystal ”, Taylor & Francis,London.(1997)
    [11] P. G. de Gennes and J. Prost, “The physics of Liquid Crystals”, 2nd ed., Clarendon Press, Oxford (1993)
    [12] M Blinov and V.G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Springer-Verlag, New York (1994)
    [13] Deng-Ke Yang and Shin-Tson Wu, “Fundanentals of Liquid Crystal Devices”, John Wiley& Sons, New York (2006)
    [14] Charles P. Poole, Jr., Frank J. Owens, “Introduction to nanotechnology”, Wiley, Hoboken (2003)
    [15] U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters”, Springer-Verlag, New York (1995)
    [16] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, J. Chem. Phys. 116, 6755 (2002)
    [17] Andrew J. Lovinger, Karl R. Amundson and Don D. Davis, Chem. Mater. 6, 1726 (1994)
    [18] Grant R. Fowles, “Introduction to Modern Optics”, 2nd ed., University of Utah, New York (1975)
    [19] Iam-Choon Khoo, “Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena”, John Wiley & Sons, New York (1995)
    [20] Giovanni Barberoan and Luiz Roberto Evangelista, “Adsorption phenomena and anchoring energy in nematic Liquid Crystals”, Taylor and Francis, Boca Raton, (2006)
    [21] L. M. Blinov and V. G. Chigrinov, “ Electro Optic Effects in Liquid Crystal Materials”, Springer-Verlag, New York (2009)
    [22] J. D. Jackson, “Classical Electrodynamics”, 2nd edition, John Wiley & Sons, New York (1990)
    [23] M. Sheik-bahae, A. A. Said, and E. W. Van Stryland, Opt. Lett., 14,955 (1989)
    [24] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Van Stryland, IEEE J. Quantum Electron., 26, 760 (1990)
    [25] S. R. Friberg and P. W. Smith, IEEE J. Quantum Electron., QE-23, 2089 (1987)
    [26] R. Adair, L.L. Chase, and S.A. Payne, L. Opt. Soc. Amer. B, 4, 875 (1987)
    [27] A. Owyoung, IEEE J. Quantum Electron., QE-9, 1064 (1973)
    [28] W.E. Williams, M.J. Soileau, and E.W. Van Stryland, Opt. Commun., 50, 256 (1984)
    [29] J. D. Gaskill, “Linear systems, Fourier Transforms, and Optics”, John Wiley& Sons, New York (1978)
    [30] D. Weaire, B. S. Wherrett, D. A. B. Miller and S. D. Smith, Opt. Lett., 4, 331 (1979)
    [31] R. Sreeja, P. M. Aneesh, Arun Aravind, R. Reshmi, Reji Philip,and M. K. Jayaraj, Electrochemical Society 156, K167-K172 (2009)
    [32] L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. V. Duyne, B. J. Wiley, and Y. Xia, Nano Lett. 5, 2034 (2005)
    [33] Pavel A. Kossyrev, Aijun Yin, Sylvain G. Cloutier, David A. Cardimona, Danhong Huang, Paul M. Alsing, and Jimmy M. Xu, Nano Lett. 5, 1978 (2005)
    [34] H. J. Yuan, L. Li and P. Palffy-Muhoray, Mol. Cryst. Liq. Cryst. 199, 223-232 (1991)
    [35] Naoki Toshima, Macromol. Symp. 156, 45-51 (2000)
    [36] Hui-Chi Lin, Chin-Hui Chen, Ting-Shan Mo, Ming-Shian Li, Chia-Rong Lee, Feng-Ming Hsieh, Jui-Hsiang Liu, and Andy Ying-Guey Fuh, Opt. Commun., 283, 323 (2010)

    下載圖示 校內:2013-08-09公開
    校外:2013-08-09公開
    QR CODE