簡易檢索 / 詳目顯示

研究生: 林韡勲
Lin, Wei-Hsun
論文名稱: 對電極材料對染料敏化太陽能電池於室內光環境下效能之影響
The Effect of Counter Electrode Materials on the Performance of Dye-sensitized Solar Cell under Indoor-light Conditions
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 113
中文關鍵詞: 染料敏化太陽能電池鈷錯合物電解質對電極穿透度雙面照光
外文關鍵詞: Dye-sensitized solar cells, Cobalt redox, Counter electrode, Transmittance, Bifacial illumination
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用白金與聚3,4-乙烯二氧噻吩(PEDOT)作為染料敏化太陽能電池的對電極材料,在鈷錯合物氧化還原對系統中,探討對電極材料極其使用量對於電池在室內光環境中效能之影響。在白金對電極的製作上,藉由濺鍍時間的調控來製備不同厚度的白金薄膜。實驗結果顯示,當濺鍍時間自105秒減少至15秒,白金的沉積量下降,由電化學阻抗分析顯示,電極與電解液界面間的電荷傳輸阻力亦降低,其相對應電池有較高的短路電流。在螢光燈強度200 lux之照射下,電池轉換效率可由20.6% (105秒)提升至22.6% (15秒)。
    此外,本研究亦利用定電流聚合法來製備PEDOT對電極,並藉由不同反應時間來調控PEDOT的沉積量。結果發現,當反應時間大於90秒後,電極上的高分子會產生團聚現象。阻抗分析結果則顯示,愈長聚合反應時間所量測到的離子擴散阻力愈大,因此電池的短路電流會隨著PEDOT量的增加而下降。當反應時間由130秒縮減至5秒時,電池在螢光燈環境中的轉換效率可自20.3%提升至23.9%。由於前述低含量Pt及PEDOT (濺鍍及反應時間5秒)的電極在可見光區域具有70%以上的穿透度,因此本研究進一步利用這些對電極製作可雙面照光之染敏電池。在室內光環境中,當光線由光電極側(正向)與對電極側(背向)入射時,使用高透光PEDOT電極的電池可分別達到19.9%與16.1%之轉換效率,而使用高透光白金電極的電池則呈現轉換效率分別為20.6%與17.3%,此兩種電池在背向與正向照光下的效率比值皆可達到0.8以上。

    The main purpose of this study is to optimize the dye-sensitized solar cell (DSSC) parameter by using platinum (Pt) and poly(3,4-ethylenedioxythiophene) (PEDOT) counter electrode of under indoor lighting condition. DSSC based on the cobalt redox couples and commercial Y123 dye are fabricated. In terms of Pt materials, this study prepared electrodes with different Pt catalyst amounts by fixing the sputtering current (40 mA) and adjusting the sputtering time. The results show that as the sputtering time decreases from 105 seconds to 15 seconds, the charge transfer resistance between the electrode and the electrolyte interface decreases, so that a better catalytic effect of the electrode can be obtained. Under the illumination of 200 lux, the efficiency can be increased from 20.6% to 22.6%. In addition, this study also used a chronopotentiometry method to prepare PEDOT counter electrode, and regulate the amount of catalyst by different reaction time. The impedance analysis results show that the longer the reaction time is, the larger the ion diffusion resistance is measured. Therefore, the short-circuit current of the DSSC will show the opposite trend with the increase of the amount of the catalyst. The efficiency of the DSSC in a fluorescent lamp environment can be increased from 20.3% to 23.9%. A low-catalyst electrode is further applied to prepare a bifacial DSSC. In a room light condition, when light is incident from the photoanode side (forward) and the counter electrode side (backward), the cells using the high-transmission PEDOT electrode can achieve efficiencies of 19.9% and 16.1%, respectively. The cells with light-transparent Pt electrodes showed efficiencies of 20.6% and 17.3%, respectively, and the efficiency ratios of the two cells in the back and forward illumination are all above 0.8.

    摘要 I Extended Abstract II 誌謝 X 總目錄 XII 表目錄 XVII 圖目錄 XX 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 2 第二章 理論與文獻回顧 3 2.1 染料敏化太陽能電池介紹 3 2.1.1 染料敏化太陽能電池之工作原理 4 2.1.2 染料敏化太陽能電池之電子傳輸路徑 5 2.2 染料敏化太陽能電池之結構 7 2.2.1 透明導電基板 7 2.2.2 氧化物半導體 8 2.2.3 光敏化劑 10 2.2.3.1 半導體敏化劑 11 2.2.3.2 釕金屬錯合物染料 12 2.2.3.3 紫質染料 15 2.2.3.4 純有機染料 16 2.2.4 電解質 19 2.2.4.1 碘電解質 20 2.2.4.2 鈷電解質 21 2.2.5 對電極 23 2.3 文獻回顧 26 2.3.1 太陽能電池於室內光下之研究 26 2.3.2 不同類型太陽能電池於室內光環境之應用 27 2.3.3 染料敏化太陽能電池於室內光環境之文獻回顧 29 2.3.4 鈷氧化還原對於室內光應用之可行性 30 2.3.5 染料敏化太陽能電池之對電極材料文獻回顧 31 第三章 實驗部分 32 3.1 實驗藥品與材料 32 3.2 實驗儀器與分析原理 35 3.2.1 高解析場發射掃描式電子顯微鏡 35 3.2.2 太陽光模擬器 36 3.2.3 室內光量測系統 40 3.2.4 入射光子轉換效率測量系統 42 3.2.5 電化學交流阻抗分析儀 44 3.2.6 電化學分析儀 48 3.2.7 濺鍍機 49 3.2.8 紫外光-可見光光譜儀 50 3.2.9 一般儀器介紹 51 3.3 實驗流程 53 3.3.1 二氧化鈦薄膜製備 53 3.3.2 光電極敏化流程 55 3.3.3 電解質製備 55 3.3.4 白金對電極製備 56 3.3.5 導電高分子PEDOT對電極製備 57 3.3.6 太陽能電池組裝 58 第四章 實驗結果與討論 59 4.1 室內光下光電極之調控 59 4.1.1 不同染料於室內光下之比較 59 4.1.2 TiO2光電極薄膜厚度之優化 62 4.1.2.1 不同TiO2薄膜層數之入射光子轉換效率 64 4.1.2.2 不同TiO2薄膜層數之電化學交流阻抗分析 65 4.2 白金對電極於染敏太陽能電池之研究 67 4.2.1 不同濺鍍時間之影響 67 4.2.1.1 不同室內光照度下的白金對電極元件效率 68 4.2.1.2 白金電極之電化學交流阻抗分析 70 4.2.1.3 白金電極之塔佛極化曲線分析 72 4.2.2 適用於太陽光條件之白金對電極元件 73 4.2.2.1 ACN電解液元件於不同室內光照度下之效能 75 4.2.3 白金電對極元件之穩定性測試 77 4.3 PEDOT對電極於染敏太陽能電池之研究 79 4.3.1 PEDOT電極之SEM分析 79 4.3.2 不同聚合時間之影響 82 4.3.2.1 不同室內光照度下的PEDOT對電極元件效率 83 4.3.2.2 PEDOT電極之電化學交流阻抗分析 85 4.3.2.3 PEDOT電極之塔佛極化曲線分析 87 4.3.3 適用於太陽光之PEDOT對電極元件 88 4.3.3.1 ACN電解液元件於不同室內光照度下之效能 90 4.3.4 PEDOT對電極元件之穩定性測試 92 4.4 高穿透度對電極元件於雙面照光之應用 94 4.4.1 白金與PEDOT電極之穿透度分析 94 4.4.2 白金與PEDOT對電極元件於雙面照光之效率 96 4.4.3 主動層厚度於可雙面照光元件之影響 99 第五章 結論與建議 102 5.1 結論 102 5.2 建議 105 第六章 參考文獻 106

    [1] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitized zinc oxide: aqueous electrolyte: platinum photocell," Nature, vol. 261, pp. 402-403, 1976.
    [2] B. O’Regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film," Nature, vol. 353, pp. 737-740, 1991.
    [3] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
    [4] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-Sensitized Solar Cells," Chemical Reviews, vol. 110, pp. 6595-6663, 2010.
    [5] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 3-14, 2004.
    [6] B. Wang and L. L. Kerr, "Dye sensitized solar cells on paper substrates," Solar Energy Materials and Solar Cells, vol. 95, pp. 2531-2535, 2011.
    [7] H. Weerasinghe, P. Sirimanne, G. Franks, G. Simon, and Y. Cheng, "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 213, pp. 30-36, 2010.
    [8] Y. Y. Kuo and C. H. Chien, "Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells," Electrochimica Acta, vol. 91, pp. 337-343, 2013.
    [9] S. Ito, N. L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, et al., "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chemical Communications, pp. 4004-4006, 2006.
    [10] C. H. Lee, W. H. Chiu, K. M. Lee, W. F. Hsieh, and J. M. Wu, "Improved performance of flexible dye-sensitized solar cells by introducing an interfacial layer on Ti substrates," Journal of Materials Chemistry, vol. 21, pp. 5114-5119, 2011.
    [11] G. R. R. A. K. K. Tennakone, I. R. M. Kottegoda and V. P. S. Perera, "An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc," Chemical Communications, pp. 15-16, 1999.
    [12] K. Keis, E. Magnusson, H. Lindström, S.-E. Lindquist, and A. Hagfeldt, "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes," Solar Energy Materials and Solar Cells, vol. 73, pp. 51-58, 2002.
    [13] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, et al., "High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes," The Journal of Physical Chemistry B, vol. 101, pp. 2598-2601, 1997.
    [14] X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, "Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications," Nano Letters, vol. 8, pp. 3781-3786, 2008.
    [15] O. K. Varghese, M. Paulose, and C. A. Grimes, "Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells," Nature Nanotechnology, vol. 4, pp. 592-597, 2009.
    [16] J. Jiu, S. Isoda, F. Wang, and M. Adachi, "Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film," The Journal of Physical Chemistry B, vol. 110, pp. 2087-2092, 2006.
    [17] L. Schmidt‐Mende, U. Bach, R. Humphry‐Baker, T. Horiuchi, H. Miura, S. Ito, et al., "Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells," Advanced Materials, vol. 17, pp. 813-815, 2005.
    [18] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, et al., "Fabrication of screen‐printing pastes from TiO2 powders for dye‐sensitised solar cells," Progress in photovoltaics: research and applications, vol. 15, pp. 603-612, 2007.
    [19] T. Miyasaka and Y. Kijitori, "Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers," Journal of the Electrochemical Society, vol. 151, pp. A1767-A1773, 2004.
    [20] W. W. Yu and X. G. Peng, "Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers," Angewandte Chemie-International Edition, vol. 41, pp. 2368-2371, 2002.
    [21] A. Nozik, "Quantum dot solar cells," Physica E: Low-dimensional Systems and Nanostructures, vol. 14, pp. 115-120, 2002.
    [22] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of Applied Physics, vol. 32, pp. 510-519, 1961.
    [23] A. Hagfeldt and M. Gratzel, "Molecular photovoltaics," Accounts of Chemical Research, vol. 33, pp. 269-277, 2000.
    [24] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphrybaker, E. Muller, P. Liska, et al., "Conversion of light to electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on nanocrystalline TiO2 electrodes," Journal of the American Chemical Society, vol. 115, pp. 6382-6390, 1993.
    [25] M. K. Nazeeruddin, P. Pechy, and M. Gratzel, "Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex," Chemical Communications, pp. 1705-1706, 1997.
    [26] M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, et al., "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells," Journal of the American Chemical Society, vol. 123, pp. 1613-1624, 2001.
    [27] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, et al., "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," Journal of the American Chemical Society, vol. 127, pp. 16835-16847, 2005.
    [28] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nature Materials, vol. 2, pp. 402-407, 2003.
    [29] Y. R. Liu, J. R. Jennings, Y. Huang, Q. Wang, S. M. Zakeeruddin, and M. Gratzel, "Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: A combined impedance spectroscopy and near-IR transmittance study," The Journal of Physical Chemistry C, vol. 115, pp. 18847-18855, 2011.
    [30] Q. J. Yu, Y. H. Wang, Z. H. Yi, N. N. Zu, J. Zhang, M. Zhang, et al., "High-efficiency dye-sensitized solar cells: The influence of lithium ions on exciton dissociation, charge recombination, and surface states," ACS Nano, vol. 4, pp. 6032-6038, 2010.
    [31] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, and M. Grätzel, "Highly Efficient Mesoscopic Dye‐Sensitized Solar Cells Based on Donor–Acceptor‐Substituted Porphyrins," Angewandte Chemie, vol. 122, pp. 6796-6799, 2010.
    [32] A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency," Science, vol. 334, pp. 629-634, Nov 4 2011.
    [33] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nature Chemistry, vol. 6, pp. 242-247, 2014.
    [34] S. Ferrere, A. Zaban, and B. A. Gregg, "Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives," The Journal of Physical Chemistry B, vol. 101, pp. 4490-4493, 1997.
    [35] N. J. Cherepy, G. P. Smestad, M. Grätzel, and J. Z. Zhang, "Ultrafast Electron Injection:  Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode," The Journal of Physical Chemistry B, vol. 101, pp. 9342-9351, 1997.
    [36] "Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells," Chemistry Letters, vol. 29, pp. 316-317, 2000.
    [37] A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, "Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. An Organized Assembly Approach for Enhancing the Efficiency of Photosensitization," The Journal of Physical Chemistry B, vol. 103, pp. 4693-4700, 1999.
    [38] K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, et al., "Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain," Chemical Communications, pp. 1173-1174, 2000.
    [39] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, "A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%," Chemical Communications, pp. 569-570, 2001.
    [40] T. Horiuchi, H. Miura, and S. Uchida, "Highly-efficient metal-free organic dyes for dye-sensitized solar cells," Chemical Communications, pp. 3036-3037, 2003.
    [41] T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, "High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes," Journal of the American Chemical Society, vol. 126, pp. 12218-12219, 2004.
    [42] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, et al., "High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye," Chemical Communications, pp. 5194-5196, 2008.
    [43] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, et al., "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer," Chemical Communications, pp. 2198-2200, 2009.
    [44] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, et al., "Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks," Chemistry of Materials, vol. 22, pp. 1915-1925, 2010.
    [45] W. Xiang, W. Huang, U. Bach, and L. Spiccia, "Stable high efficiency dye-sensitized solar cells based on a cobalt polymer gel electrolyte," Chemical Communications, vol. 49, pp. 8997-8999, 2013.
    [46] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical Communications, vol. 51, pp. 15894-15897, 2015.
    [47] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 70, pp. 85-101, 2001.
    [48] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, "Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1):  The Case of Solar Cells Using the I-/I3- Redox Couple," The Journal of Physical Chemistry B, vol. 109, pp. 3480-3487, 2005.
    [49] T. W. Hamann, "The end of iodide? Cobalt complex redox shuttles in DSSCs," Dalton Transactions, vol. 41, pp. 3111-3115, 2012.
    [50] K. Omata, S. Kuwahara, K. Katayama, S. Qing, T. Toyoda, K. M. Lee, et al., "The cause for the low efficiency of dye sensitized solar cells with a combination of ruthenium dyes and cobalt redox," Physical Chemistry Chemical Physics: PCCP, vol. 17, pp. 10170-5, 2015.
    [51] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochemistry Communications, vol. 12, pp. 1662-1665, 2010.
    [52] L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. Wei-Guang Diau, "Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells," Journal of Materials Chemistry, vol. 22, pp. 6267, 2012.
    [53] E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I2," Solar Energy Materials and Solar Cells, vol. 63, pp. 267-273, 2000.
    [54] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, et al., "Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes," Journal of The Electrochemical Society, vol. 153, pp. A2255, 2006.
    [55] K.-C. Huang, Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, et al., "A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode," Journal of Materials Chemistry, vol. 20, pp. 4067, 2010.
    [56] L. Kavan, J. H. Yum, and M. Grätzel, "Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets," Acs Nano, vol. 5, pp. 165-172, 2010.
    [57] J. M. Pringle, V. Armel, and D. R. MacFarlane, "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells," Chem. Commun., vol. 46, pp. 5367-5369, 2010.
    [58] I. Mathews, P. J. King, F. Stafford, and R. Frizzell, "Performance of III-V Solar Cells as Indoor Light Energy Harvesters," IEEE Journal of Photovoltaics, vol. 6, pp. 230-235, 2016.
    [59] P. C. Yang, I. M. Chan, C. H. Lin, and Y. L. Chang, "Thin film solar cells for indoor use," in IEEE 37th Photovoltaic Specialists Conference (PVSC), 2011, pp. 000696-000698.
    [60] F. De Rossi, T. Pontecorvo, and T. M. Brown, "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Applied Energy, vol. 156, pp. 413-422, 2015.
    [61] N. Sridhar and D. Freeman, "A study of dye sensitized solar cells under indoor and low level outdoor lighting: comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking," in 26th European Photovoltaic Solar Energy Conference and Exhibition, 2011, pp. 232-236.
    [62] T. C. Wei, C. Y. Yeh, et al., "New Acetylene‐Bridged 9,10‐Conjugated Anthracene Sensitizers: Application in Outdoor and Indoor Dye‐Sensitized Solar Cells," Advanced Energy Materials, vol. 7, pp. 1700032, 2017.
    [63] C. Y. Lin, M. C. Tsai, C. L. Wang, et al.,"A large, ultra-black, efficient and cost-effective dye-sensitized solar module approaching 12% overall efficiency under 1000 lux indoor light," Journal of Materials Chemistry A, vol. 6, pp. 1995-2003, 2018.
    [64] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, et al., "Dye-sensitized solar cells for efficient power generation under ambient lighting," Nat Photon, vol. 11, pp. 372-378, 2017.
    [65] M. Grätzel, Y. Cao, Y. Liu, et al., "Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics," Joule, vol. 2, pp. 1-10, 2018.
    [66] K. Kakiage, Y. Aoyama, et al., "An Achievement of over 12 Percent efficiency in an Orgain Dye-Sensitized Solar Cell," Chemical Communicationa, vol. 50, pp. 6379-6381, 2014.
    [67] K. Kakiage, Y. Aoyama, et al., "Fabrication of a High-Performance Dye-Sensitized Solar Cell with 12.8% Conversion Efficiency Using Organic Silyl-Anchor Dyes," Chemical Communicationa, vol. 51, pp. 6315-6317, 2015.
    [68] M. Grätzel, J. H. Yum, E. Baranoff, et al., "A Cobalt Complex Redox Shuttle for Dye-Sensitized Solar Cells with High Open-Circuit Poentials," Nature Communications, vol. 3, pp. 631, 2012.
    [69] M. Grätzel, H. N. Tsao, J. Burschka, et al., "Influence of the Interfacial Charge-Transfer Resistance at the Counter Electrode in Dye-Sensitized Solar Cells Employing Cobalt Redox Shuttles," Energy & Environmental Science, vol. 4, pp. 4921-4924, 2011.

    無法下載圖示 校內:2022-12-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE