簡易檢索 / 詳目顯示

研究生: 王 璽
Hsi-Wong,
論文名稱: 自行車車架管件形狀Truncated Ellipse之空氣力學減阻效益
Aerodynamic drag reduction with truncated ellipse airfoil in cycling aerodynamics
指導教授: 苗君易
Miau, Jiun-Jih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 60
中文關鍵詞: 截尾橢圓翼型水滴翼型空氣阻力係數流場分離分離泡。
外文關鍵詞: Truncated ellipse airfoil, Teardrop shape airfoil, drag coefficient, flow separation, separation bubble
相關次數: 點閱:147下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣阻力在競技自行車中是很重要的影響因素。為了獲得更低空氣阻力的優勢並兼顧車架本身的結構強度,水滴翼型廣泛被自行車製造商使用。它是由圓柱體和對稱NACA翼型的組合。水滴翼型確實有降低空氣阻力的效果,但這樣的設計在0度角攻角,低雷諾數範圍(30000-50000)時還是有流場分離和渦流產生的現象。透過計算流體動力學(CFD)我們能充分了解翼型表面的壓力分佈和流場的發展,藉由這些研究我們能夠得到一個新的翼型設計稱為截尾橢圓(Truncated Ellipse,簡稱TE)。與水滴翼型相比,TE翼型之空氣阻力係數較低且能使表面流場分離延遲。接著我們使用視覺流體力學實驗比較兩種翼型的流場發展現象。在水槽中使用注入染料及粒子圖像觀察兩種相同弦長與寬度的翼型之流場發展現象。在風洞中進行油流實驗表面油膜的可視化,觀察其流場分離位置。實驗結果發現,在攻角為0度時TE的流場分離發生在其後緣。在低攻角時流場分離位置皆有延遲(<15度),這是因為分離泡出現在其前緣所造成的現象。這表明TE翼型具有比水滴翼型更好的空氣動力學性能。我們的研究對未來空氣動力自行車設計有很大的幫助。

    關鍵字:截尾橢圓翼型,水滴翼型,空氣阻力係數,流場分離,分離泡。

    Aerodynamic resistance is always an issue in competitive cycling. In order to gain aerodynamic advantages and structure stiffness of the bike, the teardrop shape is widely used by bicycle manufacturers today. It is a combination of a circular cylinder and symmetric NACA airfoil. Teardrop shape airfoil does provide aerodynamic benefit, this design still suffers from early flow separation and vortex generation at yaw angle <0 degrees in the low Reynolds number range (30000-50000). Studying the pressure distribution and flow development on a number of airfoils with Computational Fluid Dynamics (CFD), we were able to obtain a new airfoil design called Truncated Ellipse (TE). The TE airfoil shows a much lower drag coefficient and flows separation delay compared with a teardrop shape. In our flow visualization experiment, we compared a TE airfoil and a teardrop shape with same chord length and width using dye-injection and Particle Image Velocimetry (PIV) visualization method in a water channel and surface oil-film method in a wind tunnel, respectively. The experimental result shows that the TE has flow separation occurred at the base of the airfoil at a 0-degree yaw angle and delayed flow separation at low yaw angles (<15 degrees) due to the development of separation bubble near the leading edge. This indicates that the TE airfoil has much better aerodynamic performance than the teardrop shape. Our research has implications for the future prospects of aerodynamic bicycle design.

    Keywords: Truncated ellipse airfoil, Teardrop shape airfoil, drag coefficient, flow separation, separation bubble.

    CONTENTS ABSTRACT I ACKNOWLEDGEMENT III CONTENTS IV LIST OF FIGURES VI LIST OF SYMBOLS X CHAPTER 1: INTRODUCTION 1 1.1 Cycling Aerodynamic in general 1 1.2 Related Studies 5 1.3 Previous study on cross-sectional airfoils of bicycle frame 6 CHAPTER 2: DESCRIPTION OF 2D CAD MODELS 13 CHAPTER 3: 2D CFD ANALYSIS 17 3.1 The models 17 3.2 Numerical method 19 3.3 Results………………………………………………………………………………21 CHAPTER 4: 3D CFD STUDY OF TE AND TEARDROP AIRFOIL 27 4.1 The workstation and models 27 4.2 Meshing method 29 4.3 Results 32 CHAPTER 5: WATER CHANNEL FLOW VISUALIZATION 35 5.1 Water channel 35 5.2 Experiment models 36 5.3 Results………………………………………………………………………………38 CHAPTER 6: SURFACE OIL FILM METHODS 44 6.1 Wind tunnel facility 44 6.2 Preparation of oil indicator and experiment setup 45 6.3 Results.……………………………………………………………………………...47 CHAPTER 7: DISCUSSION OF THE RESULTS 50 7.1 CFD simulations and Water Channel Flow Visualization 50 7.2 PIV Flow Visualization 51 7.3 Wind Tunnel Oil-film Method 51 CHAPTER 8: CONCLUSION AND RECOMMENDATION FOR FUTURE WORK 55 8.1 Conclusion 55 8.2 Recommendation for future work 55 REFERENCES 57

    1. Millet, G. P., & Candau, R. (2002)., Mechanical factors of the energy cost in three human locomotions. Science & Sports, 17, 166–176.
    2. di Prampero, P. E. (2000). Cycling on earth, in space and on the moon. European Journal Applied of Physiology, 82, 345–360.
    3. di Prampero, P. E., Cortili, G., Mognoni, P., & Saibene, F. (1979). Equation of motion of a cyclist. Journal of Applied Physiology, 47, 201–206.
    4. Kyle C.R. and Burke E.R., Improving the racing bicycle, Mechanical engineering106 (9): 34–35, 1984.
    5. Kyle, C. (1989). The aerodynamics of handlebars & helmets, Cycling Science 1(1): 22–25.
    6. Tew, G. S. and Sayers, A. T., 1999, Aerodynamics of yawed racing cycle wheels, Journal of Wind Engineering and Industrial Aerodynamics, 82, pp. 209-222
    7. Godo M.N., Corson D. and Legensky S.M., An Aerodynamic Study of Bicycle Wheel Performance Using CFD, American Institute of Aeronautics and Astronautics, 2009.
    8. R.A. Lukes*, S.B. Chin† and S.J. Haake., The understanding and development of cycling aerodynamics, Sports Engineering Research Group, Department of Mechanical Engineering, University of Sheffield, UK, Sports Engineering (2005) 8, 59–74
    9. Firoz Alama, Harun Chowdhurya,*, Ho Zhi Weia, Israt Mustarya and Gary Zimmer., Aerodynamics of ribbed bicycle racing helmets, Procedia Engineering 72 ( 2014 ) 691 – 696.
    10. T. N. Crouch1, D. Burton, N. A. T. Brown, M. C. Thompson and J.Sheridan., Flow topology in the wake of a cyclist and its effect on aerodynamic drag, Fluids Laboratory for Aeronautical and Industrial Research (FLAIR), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia, J. Fluid Mech. (2014), vol. 748, pp. 5-35.
    11. Harder P., Cusack D., Matson C., Lavery M., Airfoil Development for the Trek Speed Concept Triathlon Bicycle, 2010.
    12. Husson S., 2D CFD study of cross-section foils performances in cycling aerodynamics, Thesis, 2014.
    13. Hoerner S.F., Fluid-dynamic drag, 1965, p.3-18, p.3-19.
    14. Manon Vonthron, CFD study of cross-section foils performances in cycling aerodynamics, Thesis, 2015.
    15. J. J. MIAU, WONG HSI, S. HUSSON, 2D CFD study of cross-section foils performances in cycling aerodynamics, 16th international symposium on flow visualization, June 24 2014, Okinawa, Japan.
    16. Mark J. Lutton, Comparison of C and O-Grid Generation Methods Using a NACA 0012 Airfoil, Jan 03 1990.
    17. ANSYS Fluent user’s guide, Release 12.0, 2009, 7.3.2 Using Flow Boundary Conditions.
    18. Weaver, Matt. Body shapes and influence of the wind. Human power,no.49 , 2000, p.21-24.
    19. David Guzik, Paul Harder, Mio Suzuki, Michael Lavery, Carl Matson, Trek speed concept white paper 2013, p.8-13.
    20. Yao Zheng , Meng-Sing Liou, A novel approach of three-dimensional hybrid grid methodology: Part 1. Grid generation, NASA Glenn Research Center, MS 5-11, 21000 Brookpark Road, Cleveland, OH 44135, USA. 21 May 2003.
    21. Dimitri J. Mavriplis, Unstructured Mesh Related Issues In Computational Fluid Dynamics (CFD) – Based Analysis And Design, ICASE NASA Langley Research Center Hampton, VA 23681, USA. 11th International Meshing Roundtable September 15-18, 2002.
    22. André Bakker., Applied Computational Fluid Dynamics, Lecture 7 – Meshing, Fluent Inc. (2002), p.14-17.
    23. Milton Van Dyke, An Album of Fluid Motion, Department of Mechanical Engineering Stanford University, Stanford, California. p.27.
    24. Xing Wen Tsai, Experiment Investigations of Flows around Circular Cylinder, thesis 2006.
    25. Erickson G.E., Vortex flow correlation, Hawthorne, January 1981.
    26. Slavica Ristic, PHD, Flow Visualization Techniques in Wind Tunnels Part I – Non optical Methods, Scientific Technical Review, Vol.L VII, No. 1,2007.
    27. RISTIĆ,S. ISAKOVIĆ,J., SREĆKOVIĆ,M., MATIĆ,D.: Comparative analysis of experimental and numerical flow visualization, FME Transactions, 2006, 34, pp.143-149.
    28. OCOKOLJIĆA,G., RADULOVIĆA,J. Flow visualization and aerodynamical coefficients determination for the LASTA-95 model in wind tunnel T-35, Scientific Technical Review, 2006, Vol.56, No.2, pp.63-69.
    29. Mohsen Jahanmiri, Laminar Separation Bubble: Its Structure, Dynamics and Control, Research report 2011:06.
    30. O'Meara, M. M., Mueller, T. J., Laminar Separation Bubble Characteristics on an Airfoil at Low Reynolds Numbers, AIAA Journal, Vol. 25, No. 8, Aug 1987. issue, pp 1033-1041.
    31. Alex C.N.Tan, Laminar Separation bubble investigation on 2D Airfoil at Low Reynolds number, Phd thesis, Department of Aeronautical Engineering The University of Sydney, July 1994.
    32. Z. J. Chen, N. Qin, and A. F. Nowakowski, Three-Dimensional Laminar-Separation Bubble on a Cambered Thin Wing at Low Reynolds Numbers, Journal of Aircraft, Vol. 50, No. 1 (2013), pp. 152-163.
    33. UCI cycling regulations, General organization of cycling as a sport, 2013.
    34. UCI cycling regulations, General organization of cycling as a sport, 2014.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE