| 研究生: |
蘇上文 Su, Shang-Wen |
|---|---|
| 論文名稱: |
P型共軛高分子結構設計及有機電化學電晶體通道材料應用 Structural Design of P-Type Conjugated Polymers Applied as a Channel Materials for Organic Electrochemical Transistors |
| 指導教授: |
林彥丞
Lin, Yan-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | P型共軛高分子 、有機電化學電晶體(organic electrochemical transistors) 、共軛阻斷基(conjugation break spacers) 、碳管分選 、長期穩定性 |
| 外文關鍵詞: | p-type conjugated polymers, organic electrochemical transistor (OECT), conjugation break spacers (CBS), carbon nanotube sorting, long-term stability |
| 相關次數: | 點閱:16 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對有機電化學電晶體(organic electrochemical transistors)的性能提升,提出兩種互補的設計策略:(1)透過引入共軛阻斷練(conjugation break spacers)調控p型共軛高分子的主鏈構型與結晶性;(2)利用具選擇性的聚噻吩衍生物分散半導體型單壁碳奈米管(s-SWCNT),構築奈米混成通道材料。第一部分中,設計並合成一系列含有共軛阻斷練單元的P型共軛高分子,探討主鏈構型與結晶性對元件表現的影響。其中,以異山梨醇酐(isosorbide)為基礎的聚合物展現優異的電化學性能,其歸一化跨導 (gm,norm ) 達3.21 S cm-1,電洞遷移率(μh)為0.839 cm2V-1 s-1,臨界電壓(Vth)穩定在–0.44 V。GIWAXS分析顯示其具高度有序的分子排列,有助於有效摻雜與長期操作穩定性。相較之下,異甘露醇酐(isomannide)與異艾杜糖酐(isoidide)等具高扭曲性的高分子則呈現較低的有序性與離子傳輸能力。第二部分則探討以聚噻吩衍生物(PQT-TE與PDCTT-2T)作為選擇性分散劑,用於分選HiPCO來源的半導體型單壁碳奈米管(s-SWCNT)。光譜分析確認其具手性選擇性:PQT-TE傾向分散(8,4)碳管,而PDCTT-2T則偏好(8,6)。將所分散之碳管薄膜以滴鍍法製成有機電化學電晶體元件後,PQT-TE與PDCTT-2T分別達到高歸一化跨導值14.9與14.5 S cm-1,並展現出優異的開關速度與100次以上之循環操作穩定性。其薄膜結構有效提升聚合物、碳管與電解質三者的界面耦合,建立一種嶄新的高效訊號傳遞通道設計。
This thesis explores two complementary strategies to enhance the performance of organic electrochemical transistors (OECTs): (1) tailoring the molecular structure of p-type conjugated polymers via conjugation break spacers (CBS), and (2) developing carbon nanotube-based hybrid channels through selective dispersion using polythiophene derivatives. In the first part, a series of p-type conjugated polymers incorporating conjugation break spacers (CBS) were synthesized to investigate the effect of backbone conformation and crystallinity on device performance. Among them, the ISB-based polymer exhibited a high normalized transconductance (gm,norm) of 3.21 S cm-1, hole mobility (μh) of 0.839 cm2 V-1 s-1, and a stable threshold voltage (Vth) of –0.44 V. GIWAXS analysis revealed enhanced structural order, contributing to efficient doping and long-term operational stability. In contrast, polymers with higher torsional distortion such as IMN and IID showed reduced order and impaired ion transport. In the second part, polythiophene-based polymers—PQT-TE and PDCTT-2T—were used as selective dispersants for semiconducting single-walled carbon nanotubes (s-SWCNT). Spectroscopic characterization confirmed chirality-specific sorting, with PQT-TE preferring (8,4) tubes and PDCTT-2T favoring (8,6). Integrated into OECT devices via drop-casting, the resulting polymer–SWCNT hybrid networks exhibited high gm,norm values of 14.9 and 14.5 S cm-1, respectively, with excellent switching speed and stable operation over 100 cycles. The hybrid architecture improved interfacial coupling among polymer, nanotube, and electrolyte, forming a new channel structure optimized for efficient signal transduction.
(1) Müllen, K.; Scherf, U. Conjugated Polymers: Where We Come From, Where We Stand, and Where We Might Go. Macromolecular Chemistry and Physics 2022, 224 (3).
(2) Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Progress in Polymer Science 2020, 100.
(3) Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor–Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report. Advanced Functional Materials 2019, 30 (20).
(4) Yu, X.; Chen, L.; Li, C.; Gao, C.; Xue, X.; Zhang, X.; Zhang, G.; Zhang, D. Intrinsically Stretchable Polymer Semiconductors with Good Ductility and High Charge Mobility through Reducing the Central Symmetry of the Conjugated Backbone Units. Adv Mater 2023, 35 (17), e2209896.
(5) Zheng, Y.; Zhang, S.; Tok, J. B.; Bao, Z. Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. J Am Chem Soc 2022, 144 (11), 4699-4715.
(6) Liu, W.; Zhang, C.; Alessandri, R.; Diroll, B. T.; Li, Y.; Liang, H.; Fan, X.; Wang, K.; Cho, H.; Liu, Y.; et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nat Mater 2023, 22 (6), 737-745.
(7) Park, J. S.; Kim, G. U.; Lee, S.; Lee, J. W.; Li, S.; Lee, J. Y.; Kim, B. J. Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. Adv Mater 2022, 34 (31), e2201623.
(8) Feng, K.; Wang, J.; Jeong, S. Y.; Yang, W.; Li, J.; Woo, H. Y.; Guo, X. High-Performance n-Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency. Adv Sci (Weinh) 2023, 10 (29), e2302629.
(9) Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nature Reviews Materials 2018, 3 (2).
(10) Gu, K.; Loo, Y. L. The Polymer Physics of Multiscale Charge Transport in Conjugated Systems. Journal of Polymer Science Part B: Polymer Physics 2019, 57 (23), 1559-1571.
(11) Kukhta, N. A.; Luscombe, C. K. Gaining control over conjugated polymer morphology to improve the performance of organic electronics. Chem Commun (Camb) 2022, 58 (50), 6982-6997.
(12) Chatterjee, S.; Jinnai, S.; Ie, Y. Nonfullerene acceptors for P3HT-based organic solar cells. Journal of Materials Chemistry A 2021, 9 (35), 18857-18886.
(13) Flagg, L. Q.; Bischak, C. G.; Onorato, J. W.; Rashid, R. B.; Luscombe, C. K.; Ginger, D. S. Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors. J Am Chem Soc 2019, 141 (10), 4345-4354.
(14) Chen, Z.; Ding, X.; Wang, J.; Guo, X.; Shao, S.; Feng, K. pi-Conjugated Polymers for High-Performance Organic Electrochemical Transistors: Molecular Design Strategies, Applications and Perspectives. Angew Chem Int Ed Engl 2025, 64 (7), e202423013.
(15) Ding, L.; Yu, Z. D.; Wang, X. Y.; Yao, Z. F.; Lu, Y.; Yang, C. Y.; Wang, J. Y.; Pei, J. Polymer Semiconductors: Synthesis, Processing, and Applications. Chem Rev 2023, 123 (12), 7421-7497.
(16) Zhang, W.; Smith, J.; Watkins, S. E.; Gysel, R.; McGehee, M.; Salleo, A.; Kirkpatrick, J.; Ashraf, S.; Anthopoulos, T.; Heeney, M.; et al. Indacenodithiophene Semiconducting Polymers for High-Performance, Air-Stable Transistors. Journal of the American Chemical Society 2010, 132 (33), 11437-11439.
(17) Jung, I. H.; Hong, C. T.; Lee, U. H.; Kang, Y. H.; Jang, K. S.; Cho, S. Y. High Thermoelectric Power Factor of a Diketopyrrolopyrrole-Based Low Bandgap Polymer via Finely Tuned Doping Engineering. Sci Rep 2017, 7, 44704.
(18) Broch, K.; Venkateshvaran, D.; Lemaur, V.; Olivier, Y.; Beljonne, D.; Zelazny, M.; Nasrallah, I.; Harkin, D. J.; Statz, M.; Pietro, R. D.; et al. Measurements of Ambipolar Seebeck Coefficients in High‐Mobility Diketopyrrolopyrrole Donor–Acceptor Copolymers. Advanced Electronic Materials 2017, 3 (11).
(19) Jeong, D.; Jo, I. Y.; Lee, S.; Kim, J. H.; Kim, Y.; Kim, D.; Reynolds, J. R.; Yoon, M. H.; Kim, B. J. High‐Performance n‐Type Organic Electrochemical Transistors Enabled by Aqueous Solution Processing of Amphiphilicity‐Driven Polymer Assembly. Advanced Functional Materials 2022, 32 (16).
(20) Back, J. Y.; Yu, H.; Song, I.; Kang, I.; Ahn, H.; Shin, T. J.; Kwon, S.-K.; Oh, J. H.; Kim, Y.-H. Investigation of Structure–Property Relationships in Diketopyrrolopyrrole-Based Polymer Semiconductors via Side-Chain Engineering. Chemistry of Materials 2015, 27 (5), 1732-1739.
(21) Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. Record high hole mobility in polymer semiconductors via side-chain engineering. J Am Chem Soc 2013, 135 (40), 14896-14899.
(22) Giovannitti, A.; Rashid, R. B.; Thiburce, Q.; Paulsen, B. D.; Cendra, C.; Thorley, K.; Moia, D.; Mefford, J. T.; Hanifi, D.; Weiyuan, D.; et al. Energetic Control of Redox-Active Polymers toward Safe Organic Bioelectronic Materials. Adv Mater 2020, 32 (16), e1908047.
(23) Howard, J. B.; Thompson, B. C. Design of Random and Semi‐Random Conjugated Polymers for Organic Solar Cells. Macromolecular Chemistry and Physics 2017, 218 (21).
(24) Charlier, J.-C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Reviews of Modern Physics 2007, 79 (2), 677-732.
(25) Gupta, N.; Gupta, S. M.; Sharma, S. K. Carbon nanotubes: synthesis, properties and engineering applications. Carbon Letters 2019, 29 (5), 419-447.
(26) Chae, S. H.; Lee, Y. H. Carbon nanotubes and graphene towards soft electronics. Nano Convergence 2014, 1 (1), 15.
(27) Peng, L.-M.; Zhang, Z.; Wang, S. Carbon nanotube electronics: recent advances. Materials Today 2014, 17 (9), 433-442.
(28) Avouris, P.; Freitag, M.; Perebeinos, V. Carbon-nanotube photonics and optoelectronics. Nature Photonics 2008, 2 (6), 341-350.
(29) Liu, C. H.; Liu, Y. Y.; Zhang, Y. H.; Wei, R. R.; Zhang, H. L. Tandem extraction strategy for separation of metallic and semiconducting SWCNTs using condensed benzenoid molecules: effects of molecular morphology and solvent. Phys Chem Chem Phys 2009, 11 (33), 7257-7267.
(30) Sanchez-Valencia, J. R.; Dienel, T.; Gröning, O.; Shorubalko, I.; Mueller, A.; Jansen, M.; Amsharov, K.; Ruffieux, P.; Fasel, R. Controlled synthesis of single-chirality carbon nanotubes. Nature 2014, 512 (7512), 61-64.
(31) Dass, D. Structural parameters, electronic properties, and band gaps of a single walled carbon nanotube: A pz orbital tight binding study. Superlattices and Microstructures 2018, 120, 108-126.
(32) Wang, Q. Effective in-plane stiffness and bending rigidity of armchair and zigzag carbon nanotubes. International Journal of Solids and Structures 2004, 41 (20), 5451-5461.
(33) Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Susi, T.; Jiang, H.; Nasibulin, A. G.; et al. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities. Applied Physics Letters 2015, 107 (1).
(34) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon Nanotubes--the Route Toward Applications. Science 2002, 297 (5582), 787-792.
(35) He, M.; Zhang, S.; Zhang, J. Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chem Rev 2020, 120 (22), 12592-12684.
(36) Nessim, G. D. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition. Nanoscale 2010, 2 (8), 1306-1323.
(37) Journet, C.; Maser, W. K.; Bernier, P.; Loiseau, A.; de la Chapelle, M. L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J. E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388 (6644), 756-758.
(38) Ebbesen, T. W.; Ajayan, P. M. Large-scale synthesis of carbon nanotubes. Nature 1992, 358 (6383), 220-222.
(39) Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters 1995, 243 (1), 49-54.
(40) Kong, J.; Cassell, A. M.; Dai, H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters 1998, 292 (4), 567-574.
(41) Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 1999, 283 (5401), 512-514.
(42) Su, M.; Zheng, B.; Liu, J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chemical Physics Letters 2000, 322 (5), 321-326.
(43) Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters 1999, 313 (1), 91-97.
(44) Li, Y.; Mann, D.; Rolandi, M.; Kim, W.; Ural, A.; Hung, S.; Javey, A.; Cao, J.; Wang, D.; Yenilmez, E.; et al. Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method. Nano Letters 2004, 4 (2), 317-321.
(45) Zhong, G.; Iwasaki, T.; Honda, K.; Furukawa, Y.; Ohdomari, I.; Kawarada, H. Low Temperature Synthesis of Extremely Dense and Vertically Aligned Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics 2005, 44 (4R).
(46) Saifuddin, N.; Raziah, A. Z.; Junizah, A. R. Carbon Nanotubes: A Review on Structure and Their Interaction with Proteins. Journal of Chemistry 2013, 2013 (1), 676815.
(47) Park, Y. S.; Kim, K. S.; Jeong, H. J.; Kim, W. S.; Moon, J. M.; An, K. H.; Bae, D. J.; Lee, Y. S.; Park, G.-S.; Lee, Y. H. Low pressure synthesis of single-walled carbon nanotubes by arc discharge. Synthetic Metals 2002, 126 (2), 245-251.
(48) Rastogi, V.; Yadav, P.; Bhattacharya, S. S.; Mishra, A. K.; Verma, N.; Verma, A.; Pandit, J. K. Carbon Nanotubes: An Emerging Drug Carrier for Targeting Cancer Cells. Journal of Drug Delivery 2014, 2014 (1), 670815.
(49) Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306 (5700), 1362.
(50) Huang, S.; Woodson, M.; Smalley, R.; Liu, J. Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using “Fast-Heating” Chemical Vapor Deposition Process. Nano Letters 2004, 4 (6), 1025-1028.
(51) Vir Singh, M.; Kumar Tiwari, A.; Gupta, R. Catalytic Chemical Vapor Deposition Methodology for Carbon Nanotubes Synthesis. ChemistrySelect 2023, 8 (32), e202204715.
(52) Deng, B.; Liu, Z.; Peng, H. Toward Mass Production of CVD Graphene Films. Advanced Materials 2019, 31 (9), 1800996.
(53) Li, M.; Liu, D.; Wei, D.; Song, X.; Wei, D.; Wee, A. T. S. Controllable Synthesis of Graphene by Plasma-Enhanced Chemical Vapor Deposition and Its Related Applications. Advanced Science 2016, 3 (11), 1600003.
(54) Predtechenskiy, M. R.; Khasin, A. A.; Bezrodny, A. E.; Bobrenok, O. F.; Dubov, D. Y.; Muradyan, V. E.; Saik, V. O.; Smirnov, S. N. New perspectives in SWCNT applications: Tuball SWCNTs. Part 1. Tuball by itself—All you need to know about it. Carbon Trends 2022, 8, 100175.
(55) Zhao, P.; Einarsson, E.; Xiang, R.; Murakami, Y.; Maruyama, S. Controllable Expansion of Single-Walled Carbon Nanotube Dispersions Using Density Gradient Ultracentrifugation. The Journal of Physical Chemistry C 2010, 114 (11), 4831-4834.
(56) Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotechnology 2006, 1 (1), 60-65.
(57) Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nature Nanotechnology 2010, 5 (6), 443-450.
(58) Podlesny, B.; Olszewska, B.; Yaari, Z.; Jena, P. V.; Ghahramani, G.; Feiner, R.; Heller, D. A.; Janas, D. En route to single-step, two-phase purification of carbon nanotubes facilitated by high-throughput spectroscopy. Scientific Reports 2021, 11 (1), 10618.
(59) Jain, R. M.; Ben-Naim, M.; Landry, M. P.; Strano, M. S. Competitive Binding in Mixed Surfactant Systems for Single-Walled Carbon Nanotube Separation. The Journal of Physical Chemistry C 2015, 119 (39), 22737-22745.
(60) Lin, S.; Blankschtein, D. Role of the Bile Salt Surfactant Sodium Cholate in Enhancing the Aqueous Dispersion Stability of Single-Walled Carbon Nanotubes: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B 2010, 114, 15616.
(61) Khripin, C. Y.; Fagan, J. A.; Zheng, M. Spontaneous Partition of Carbon Nanotubes in Polymer-Modified Aqueous Phases. Journal of the American Chemical Society 2013, 135, 6822.
(62) Khripin, C. Y.; Fagan, J. A.; Zheng, M. Spontaneous Partition of Carbon Nanotubes in Polymer-Modified Aqueous Phases. Journal of the American Chemical Society 2013, 135 (18), 6822-6825.
(63) Liu, H.; Tanaka, T.; Urabe, Y.; Kataura, H. High-Efficiency Single-Chirality Separation of Carbon Nanotubes Using Temperature-Controlled Gel Chromatography. Nano Letters 2013, 13 (5), 1996-2003.
(64) Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nature Communications 2011, 2 (1), 309.
(65) Liu, H.; Tanaka, T.; Kataura, H. Optical Isomer Separation of Single-Chirality Carbon Nanotubes Using Gel Column Chromatography. Nano Letters 2014, 14 (11), 6237-6243.
(66) Wang, H.; Koleilat, G. I.; Liu, P.; Jiménez-Osés, G.; Lai, Y.-C.; Vosgueritchian, M.; Fang, Y.; Park, S.; Houk, K. N.; Bao, Z. Correction to High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors. ACS Nano 2014, 8 (7), 7550-7550.
(67) Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology 2007, 2 (10), 640-646.
(68) Bonaccorso, F.; Hasan, T.; Tan, P. H.; Sciascia, C.; Privitera, G.; Di Marco, G.; Gucciardi, P. G.; Ferrari, A. C. Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. The Journal of Physical Chemistry C 2010, 114 (41), 17267-17285.
(69) Janas, D. Towards monochiral carbon nanotubes: a review of progress in the sorting of single-walled carbon nanotubes. Materials Chemistry Frontiers 2018, 2 (1), 36-63.
(70) Subbaiyan, N. K.; Cambré, S.; Parra-Vasquez, A. N. G.; Hároz, E. H.; Doorn, S. K.; Duque, J. G. Role of Surfactants and Salt in Aqueous Two-Phase Separation of Carbon Nanotubes toward Simple Chirality Isolation. ACS Nano 2014, 8 (2), 1619-1628.
(71) Fagan, J. A.; Khripin, C. Y.; Silvera Batista, C. A.; Simpson, J. R.; Hároz, E. H.; Hight Walker, A. R.; Zheng, M. Isolation of Specific Small-Diameter Single-Wall Carbon Nanotube Species via Aqueous Two-Phase Extraction. Advanced Materials 2014, 26 (18), 2800-2804.
(72) Fong, D.; Adronov, A. Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chem Sci 2017, 8 (11), 7292-7305.
(73) Sirringhaus, H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 2014, 26 (9), 1319-1335.
(74) Strakosas, X.; Bongo, M.; Owens, R. M. The organic electrochemical transistor for biological applications. Journal of Applied Polymer Science 2015, 132 (15).
(75) Kergoat, L.; Piro, B.; Berggren, M.; Horowitz, G.; Pham, M.-C. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Analytical and Bioanalytical Chemistry 2012, 402 (5), 1813-1826.
(76) Wang, N.; Yang, A.; Fu, Y.; Li, Y.; Yan, F. Functionalized Organic Thin Film Transistors for Biosensing. Accounts of Chemical Research 2019, 52 (2), 277-287.
(77) Lin, P.; Yan, F. Organic Thin-Film Transistors for Chemical and Biological Sensing. Advanced Materials 2012, 24 (1), 34-51.
(78) Torsi, L.; Magliulo, M.; Manoli, K.; Palazzo, G. Organic field-effect transistor sensors: a tutorial review. Chemical Society Reviews 2013, 42 (22), 8612-8628, 10.1039/C3CS60127G.
(79) Sun, H.; Gerasimov, J.; Berggren, M.; Fabiano, S. n-Type organic electrochemical transistors: materials and challenges. Journal of Materials Chemistry C 2018, 6 (44), 11778-11784, 10.1039/C8TC03185A.
(80) Guo, J.; Chen, S. E.; Giridharagopal, R.; Bischak, C. G.; Onorato, J. W.; Yan, K.; Shen, Z.; Li, C.-Z.; Luscombe, C. K.; Ginger, D. S. Understanding asymmetric switching times in accumulation mode organic electrochemical transistors. Nature Materials 2024, 23 (5), 656-663.
(81) Zeglio, E.; Inganäs, O. Active Materials for Organic Electrochemical Transistors. Advanced Materials 2018, 30 (44), 1800941.
(82) Wang, Y.; Wustoni, S.; Surgailis, J.; Zhong, Y.; Koklu, A.; Inal, S. Designing organic mixed conductors for electrochemical transistor applications. Nature Reviews Materials 2024, 9 (4), 249-265.
(83) Tang, C. G.; Wu, R.; Chen, Y.; Zhou, Z.; He, Q.; Li, T.; Wu, X.; Hou, K.; Kousseff, C. J.; McCulloch, I.; et al. A Universal Biocompatible and Multifunctional Solid Electrolyte in p-Type and n-Type Organic Electrochemical Transistors for Complementary Circuits and Bioelectronic Interfaces. Advanced Materials 2024, 36 (36), 2405556.
(84) Ohayon, D.; Druet, V.; Inal, S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem Soc Rev 2023, 52 (3), 1001-1023.
(85) van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Alec Talin, A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nature Materials 2017, 16 (4), 414-418.
(86) Bowling, R.; Packard, R. T.; McCreery, R. L. Mechanism of electrochemical activation of carbon electrodes: role of graphite lattice defects. Langmuir 1989, 5 (3), 683-688.
(87) Ranganathan, S.; McCreery, R. L. Electroanalytical Performance of Carbon Films with Near-Atomic Flatness. Analytical Chemistry 2001, 73 (5), 893-900.
(88) Rivnay, J.; Leleux, P.; Ferro, M.; Sessolo, M.; Williamson, A.; Koutsouras, D. A.; Khodagholy, D.; Ramuz, M.; Strakosas, X.; Owens, R. M.; et al. High-performance transistors for bioelectronics through tuning of channel thickness. Science Advances 1 (4), e1400251.
(89) Ohayon, D.; Druet, V.; Inal, S. A guide for the characterization of organic electrochemical transistors and channel materials. Chemical Society Reviews 2023, 52 (3), 1001-1023, 10.1039/D2CS00920J.
(90) Bernards, D. A.; Malliaras, G. G. Steady‐State and Transient Behavior of Organic Electrochemical Transistors. Advanced Functional Materials 2007, 17 (17), 3538-3544.
(91) Kukhta, N. A.; Marks, A.; Luscombe, C. K. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic–Electronic Conductors for Organic Electrochemical Transistors. Chemical Reviews 2022, 122 (4), 4325-4355.
(92) Moser, M.; Hidalgo, T. C.; Surgailis, J.; Gladisch, J.; Ghosh, S.; Sheelamanthula, R.; Thiburce, Q.; Giovannitti, A.; Salleo, A.; Gasparini, N.; et al. Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. Advanced Materials 2020, 32 (37), 2002748.
(93) Gladisch, J.; Stavrinidou, E.; Ghosh, S.; Giovannitti, A.; Moser, M.; Zozoulenko, I.; McCulloch, I.; Berggren, M. Reversible Electronic Solid–Gel Switching of a Conjugated Polymer. Advanced Science 2020, 7 (2), 1901144.
(94) Savva, A.; Hallani, R.; Cendra, C.; Surgailis, J.; Hidalgo, T. C.; Wustoni, S.; Sheelamanthula, R.; Chen, X.; Kirkus, M.; Giovannitti, A.; et al. Balancing Ionic and Electronic Conduction for High-Performance Organic Electrochemical Transistors. Advanced Functional Materials 2020, 30 (11), 1907657.
(95) Savva, A.; Cendra, C.; Giugni, A.; Torre, B.; Surgailis, J.; Ohayon, D.; Giovannitti, A.; McCulloch, I.; Di Fabrizio, E.; Salleo, A.; et al. Influence of Water on the Performance of Organic Electrochemical Transistors. Chemistry of Materials 2019, 31 (3), 927-937.
(96) Teng, X.; Sun, J.; Jiang, J.; Ke, S.; Li, J.; Lou, Z.; Hou, Y.; Hu, Y.; Teng, F. Ion effects on salt-in-water electrolyte gated polymer electrochemical transistors. Organic Electronics 2023, 120, 106859.
(97) Giovannitti, A.; Rashid, R. B.; Thiburce, Q.; Paulsen, B. D.; Cendra, C.; Thorley, K.; Moia, D.; Mefford, J. T.; Hanifi, D.; Weiyuan, D.; et al. Energetic Control of Redox-Active Polymers toward Safe Organic Bioelectronic Materials. Advanced Materials 2020, 32 (16), 1908047.
(98) Asplund, M.; Nyberg, T.; Inganäs, O. Electroactive polymers for neural interfaces. Polymer Chemistry 2010, 1 (9), 1374-1391, 10.1039/C0PY00077A.
(99) ElMahmoudy, M.; Inal, S.; Charrier, A.; Uguz, I.; Malliaras, G. G.; Sanaur, S. Tailoring the Electrochemical and Mechanical Properties of PEDOT:PSS Films for Bioelectronics. Macromolecular Materials and Engineering 2017, 302 (5), 1600497.
(100) Proctor, C. M.; Rivnay, J.; Malliaras, G. G. Understanding volumetric capacitance in conducting polymers. Journal of Polymer Science Part B: Polymer Physics 2016, 54 (15), 1433-1436.
(101) Jang, H.-J.; Song, Y.; Wagner, J.; Katz, H. E. Suppression of Ionic Doping by Molecular Dopants in Conjugated Polymers for Improving Specificity and Sensitivity in Biosensing Applications. ACS Applied Materials & Interfaces 2020, 12 (40), 45036-45044.
(102) Fenoy, G. E.; von Bilderling, C.; Knoll, W.; Azzaroni, O.; Marmisollé, W. A. PEDOT:Tosylate-Polyamine-Based Organic Electrochemical Transistors for High-Performance Bioelectronics. Advanced Electronic Materials 2021, 7 (6), 2100059.
(103) Paterson, A. F.; Savva, A.; Wustoni, S.; Tsetseris, L.; Paulsen, B. D.; Faber, H.; Emwas, A. H.; Chen, X.; Nikiforidis, G.; Hidalgo, T. C.; et al. Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nature Communications 2020, 11 (1), 3004.
(104) Flagg, L. Q.; Bischak, C. G.; Onorato, J. W.; Rashid, R. B.; Luscombe, C. K.; Ginger, D. S. Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors. Journal of the American Chemical Society 2019, 141 (10), 4345-4354.
(105) Yu, S.; Ratcliff, E. L. Tuning Organic Electrochemical Transistor (OECT) Transconductance toward Zero Gate Voltage in the Faradaic Mode. ACS Applied Materials & Interfaces 2021, 13 (42), 50176-50186.
(106) Li, P.; Lei, T. Molecular design strategies for high-performance organic electrochemical transistors. Journal of Polymer Science 2022, 60 (3), 377-392.
(107) Nielsen, C. B.; Turbiez, M.; McCulloch, I. Recent Advances in the Development of Semiconducting DPP-Containing Polymers for Transistor Applications. Advanced Materials 2013, 25 (13), 1859-1880.
(108) Stalder, R.; Mei, J.; Graham, K. R.; Estrada, L. A.; Reynolds, J. R. Isoindigo, a Versatile Electron-Deficient Unit For High-Performance Organic Electronics. Chemistry of Materials 2014, 26 (1), 664-678.
(109) Giovannitti, A.; Sbircea, D.-T.; Inal, S.; Nielsen, C. B.; Bandiello, E.; Hanifi, D. A.; Sessolo, M.; Malliaras, G. G.; McCulloch, I.; Rivnay, J. Controlling the mode of operation of organic transistors through side-chain engineering. Proceedings of the National Academy of Sciences 2016, 113 (43), 12017-12022.
(110) Inal, S.; Malliaras, G. G.; Rivnay, J. Benchmarking organic mixed conductors for transistors. Nature Communications 2017, 8 (1), 1767.
(111) Moser, M.; Savva, A.; Thorley, K.; Paulsen, B. D.; Hidalgo, T. C.; Ohayon, D.; Chen, H.; Giovannitti, A.; Marks, A.; Gasparini, N.; et al. Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angewandte Chemie International Edition 2021, 60 (14), 7777-7785.
(112) Filatre-Furcate, A.; Higashino, T.; Lorcy, D.; Mori, T. Air-stable n-channel organic field-effect transistors based on a sulfur rich π-electron acceptor. Journal of Materials Chemistry C 2015, 3 (15), 3569-3573, 10.1039/C5TC00253B.
(113) Giovannitti, A.; Nielsen, C. B.; Sbircea, D.-T.; Inal, S.; Donahue, M.; Niazi, M. R.; Hanifi, D. A.; Amassian, A.; Malliaras, G. G.; Rivnay, J.; et al. N-type organic electrochemical transistors with stability in water. Nature Communications 2016, 7 (1), 13066.
(114) Sun, H.; Vagin, M.; Wang, S.; Crispin, X.; Forchheimer, R.; Berggren, M.; Fabiano, S. Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors. Advanced Materials 2018, 30 (9), 1704916.
(115) Wu, Y.-S.; Lin, Y.-C.; Hung, S.-Y.; Chen, C.-K.; Chiang, Y.-C.; Chueh, C.-C.; Chen, W.-C. Investigation of the Mobility–Stretchability Relationship of Ester-Substituted Polythiophene Derivatives. Macromolecules 2020, 53 (12), 4968-4981.
(116) Yu, P.-J.; Lin, Y.-C.; Lin, C.-Y.; Chen, W.-C. Enhanced mobility preservation of polythiophenes in stretched states utilizing thienyl-ester conjugated side chain. Polymer 2023, 264, 125575.
(117) Shahi, M.; Le, V. N.; Alarcon Espejo, P.; Alsufyani, M.; Kousseff, C. J.; McCulloch, I.; Paterson, A. F. The organic electrochemical transistor conundrum when reporting a mixed ionic–electronic transport figure of merit. Nature Materials 2024, 23 (1), 2-8.
(118) Paulsen, B. D.; Frisbie, C. D. Dependence of Conductivity on Charge Density and Electrochemical Potential in Polymer Semiconductors Gated with Ionic Liquids. The Journal of Physical Chemistry C 2012, 116 (4), 3132-3141.
(119) Su, S.-W.; Shimizu, H.; Matsuda, M.; Chen, P.-H.; Tung, Y.-H.; Huang, Y.-C.; Li, C.-Y.; Higashihara, T.; Lin, Y.-C. Mobility and Stability Enhancements of Conjugated Polymers with Diastereomeric Conjugation Break Spacers in Organic Electrochemical Transistors. Macromolecules 2025, 58 (11), 5807-5820.
(120) Huang, L.; Wang, Z.; Chen, J.; Wang, B.; Chen, Y.; Huang, W.; Chi, L.; Marks, T. J.; Facchetti, A. Porous Semiconducting Polymers Enable High-Performance Electrochemical Transistors. Advanced Materials 2021, 33 (14), 2007041.
(121) Zhu, G.; Chen, J.; Duan, J.; Liao, H.; Zhu, X.; Li, Z.; McCulloch, I.; Yue, W. Fluorinated Alcohol-Processed N-Type Organic Electrochemical Transistor with High Performance and Enhanced Stability. ACS Applied Materials & Interfaces 2022, 14 (38), 43586-43596.
(122) Keene, S. T.; Gatecliff, L. W.; Bidinger, S. L.; Moser, M.; McCulloch, I.; Malliaras, G. G. Stable operating windows for polythiophene organic electrochemical transistors. MRS Communications 2024, 14 (2), 158-166.
(123) Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J.; et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nature Communications 2011, 2 (1), 541.
(124) Magnanelli, T. J.; Bragg, A. E. Time-Resolved Raman Spectroscopy of Polaron Pair Formation in Poly(3-hexylthiophene) Aggregates. The Journal of Physical Chemistry Letters 2015, 6 (3), 438-445.