簡易檢索 / 詳目顯示

研究生: 鄭詠心
Cheng, Youg-Sin
論文名稱: 整合空間資料與隨機森林演算法比對像元式與物件式分析於崩塌潛勢評估
Assessment of Landslide Susceptibility Based on Pixel-Based and Object-Oriented Approaches by Integrating Geo-spatial Data and Random Forest Algorithms
指導教授: 余騰鐸
Yu, Teng-To
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 92
中文關鍵詞: 崩塌地預測隨機森林演算法光達曾文水庫集水區像元式物件式
外文關鍵詞: landslide prediction, random forests (RF), LiDAR, Tsengwen River Watershed, pixel-based, object-based
相關次數: 點閱:110下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今氣候變遷的影響下,各種天然災害影響著人類生存的環境,具有付出代價最高、最致命天然災害的名單中,坡地崩塌災害榜上有名,其對人的社會帶來巨大的破壞以及環境威脅無法忽視。如何提供與崩塌地相關的重要空間資訊給行政單位制訂完備的減災法規以及政策甚為重要。本研究旨在使用機器學習方法於曾文溪流域的研究區域內,進行崩塌地潛勢預測,該流域為台灣最容易發生崩塌地的區域之一。因此,本研究以光達資料為時間基準,蒐集2009年至2015年曾文溪流域的相關空間數據,彙整出14個因子和崩塌地資料庫之資料,以隨機森林演算法建立崩塌地預測模型。同時採用像元式與物件式兩種分析方法建構模型,並進行比較。其結果顯示,基於像元式分析方法所獲得的高潛勢崩塌地的預測結果準確率為91.4%;以物件式分析方法所獲得的高潛勢崩塌預測結果準確率為86.5%。而Kappa係數評估結果,像元式分析方法達到0.83而物件式分析方法為0.73。此研究顯示,基於隨機森林演算法於曾文水庫集水區進行崩塌地潛勢預測時,透過於像元式分析中採用較粗分析尺度的移動窗口,以及於物件式分析中採用不同因子或變數進行物件分割獲取最佳分割單元,能對地形因子、水文因子、地質因子以及土地覆蓋因子進行潛勢預測分析中獲得較佳的成果。另外,兩種分析方法都顯示出,土地利用、地下水補給量和與舊崩塌地的距離,是研究區域中促發高潛勢崩塌地的最重要三個影響因素。

    Landslides have been identified as one of the costliest and deadliest natural disasters, causing tremendous damage to humans and societies. Information regarding the spatial extent of landslides is thus important to allow officials to devise successful strategies to mitigate landslide hazards. This study aims to develop a machine-learning approach for predicting landslide areas in the Tsengwen River Watershed (TRW), which is one of the most landslide-prone areas in Southern Taiwan. According to the date of LiDAR data, various spatial datasets were collected from 2009 to 2015 to derive 14 factors and landslides ground references data used for landslide modeling with random forests (RF) algorithms. Two approaches, pixel-based and object-based, were adopted for building the landslide prediction model. The results of the high susceptibility landslide compared with ground reference data demonstrated the high accuracy of 91.4% for the pixel-based data set and 86.5% for the object-based data set. The kappa coefficient was evaluated as 0.83 for the pixel-based data set and 0.73 for the object-based data set, respectively. The findings achieved from this study validated our RF-based approach for landslide prediction in the Tsengwen Reservoir watershed of Taiwan, using optimal hydrological, geological, and topographical variables, coarser moving window sizes in the pixel-based approach, and selected variables segmentation in the object-based approach. Both approaches indicated that land-use/land-cover (LULC) types recharge of groundwater, and distance to old landslides were the most influential factors that trigger landslides in the study region.

    摘要 I Abstract II 誌謝 III CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VIII Chapter 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Research Objectives and Scope 2 1.3 Innovation and Contributions 3 1.4 Layout of Thesis 4 Chapter 2 LITERATURE REVIEW 6 2.1 Machine-learning Algorithms for Landslide Susceptibility Assessment 7 2.2 Geo-spatial Data based Landslide Inventory and Landslide Factors 11 2.3 Landslide Susceptibility Assessment Using the Pixel-based Approach 13 2.4 Landslide Susceptibility Assessment Using the Object-based Approach 15 2.5 Summary 16 Chapter 3 STUDY SITE and MATERIALS 17 3.1 Study Area 17 3.2 Data 20 Chapter 4 METHODOLOGY 22 4.1 Data Pre-processing and Spatial Analysis 23 4.1.1 Pixel-based data preprocessing 39 4.1.2 Object-based data preprocessing 42 4.2 Random Forest Algorithms 45 4.3 Landslide Susceptibility Assessments 52 4.4 Accuracy Assessment 53 Chapter 5 RESULTS and DISCUSSION 57 5.1 Pixel-Based Landslide Susceptibility Assessment 57 5.1.1 Multi-scale of Pixel-based Results 57 5.1.2 Accuracy Assessment of Pixel-based Results 59 5.2 Object-Based Landslide Susceptibility Assessment 63 5.2.1 Scale Significance and Segmentation Assessment Variables 63 5.2.2 Object-based Segmentation Results 66 5.2.3 Accuracy Assessment of Object-based Results 69 5.3 Discussion 75 Chapter 6 CONCLUSION and RECOMMENDATION 82 6.1 Conclusion 82 6.2 Recommendation 83 References 84

    Ali, M. Z., Chu, H. J., Chen, Y. C., &Ullah, S. (2021). Machine learning in earthquake- and typhoon-triggered landslide susceptibility mapping and critical factor identification. Environmental Earth Sciences, 80(6), 1–21. https://doi.org/10.1007/s12665-021-09510-z
    Arabameri, A., Pradhan, B., Rezaei, K., &Lee, C.-W. (2019). Assessment of Landslide Susceptibility Using Statistical- and Artificial Intelligence-Based FR–RF Integrated Model and Multiresolution DEMs. In Remote Sensing (Vol. 11, Issue 9). https://doi.org/10.3390/rs11090999
    Arabameri, A., Saha, S., Roy, J., Chen, W., Blaschke, T., &Tien Bui, D. (2020). Landslide Susceptibility Evaluation and Management Using Different Machine Learning Methods in The Gallicash River Watershed, Iran. In Remote Sensing (Vol. 12, Issue 3). https://doi.org/10.3390/rs12030475
    Arnone, E, Dialynas, Y. G., Noto, L.V, &Bras, R. L. (2016). Accounting for soil parameter uncertainty in a physically based and distributed approach for rainfall-triggered landslides. Hydrological Processes, 30(6), 927–944. https://doi.org/https://doi.org/10.1002/hyp.10609
    Arnone, Elisa, Francipane, A., Noto, L.V., Scarbaci, A., &LaLoggia, G. (2014). Strategies investigation in using artificial neural network for landslide susceptibility mapping: Application to a Sicilian catchment. Journal of Hydroinformatics, 16(2), 502–515. https://doi.org/10.2166/hydro.2013.191
    Baldo, M., Bicocchi, C., Chiocchini, U., Giordan, D., &Lollino, G. (2009). LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy. Geomorphology, 105(3), 193–201. https://doi.org/https://doi.org/10.1016/j.geomorph.2008.09.015
    Blais, A., &Behnia, P. (2015). Debris flow susceptibility mapping using a qualitative heuristic method and Flow-R along the Yukon Alaska Highway Corridor, Canada. Natural Hazards and Earth System Sciences Discussions, 3(5), 3509–3541. https://doi.org/10.5194/nhessd-3-3509-2015
    Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
    Broeckx, J., Vanmaercke, M., Duchateau, R., &Poesen, J. (2018). A data-based landslide susceptibility map of Africa. Earth-Science Reviews, 185, 102–121. https://doi.org/https://doi.org/10.1016/j.earscirev.2018.05.002
    Burrough, P., &McDonnell, R. (1998). Principle of Geographic Information Systems. Oxford University Press.
    Carrara, A., Crosta, G., &Frattini, P. (2008). Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology, 94(3–4), 353–378. https://doi.org/10.1016/j.geomorph.2006.10.033
    Castellanos Abella, E. A., &VanWesten, C. J. (2008). Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology, 94(3–4), 453–466. https://doi.org/10.1016/j.geomorph.2006.10.038
    Catani, F., Lagomarsino, D., Segoni, S., &Tofani, V. (2013). Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Natural Hazards and Earth System Science, 13(11), 2815–2831. https://doi.org/10.5194/nhess-13-2815-2013
    Central Geological Survey. (2003). Geologic Map of Taiwan (1:500,000). In Central Geological Survey, MOEA. Central Geological Survey, MOEA.
    Central Geological Survey, Jet-Link Information Technologies Inc., NCKU Research and Development Foundation, National Taiwan Urnivesity, Chia Nan University of Pharmacy and Science. (2015). Mountain groundwater resource investigation in northern area of Taiwan –Investigation and assessment of groundwater resources in Southern division of mountain area, Taiwan(2/4). New Taipei: Central Geological Survey, MOEA. (經濟部中央地質調查所、捷連科技有限公司、財團法人成大研究發展基金會、國立臺灣大學、嘉南藥理大學 (2015)。臺灣南段山區地下水資源調查-臺灣南段山區地下水資源調查與評估(2/4)。經濟部中央地質調查所報告 (委辦計畫編號:104-5226904000-08-02)。新北市:經濟部中央地質調查所。)
    Central Geological Survey, NCKU Research and Development Foundation, National Taiwan Urnivesity, Chia Nan University of Pharmacy and Science. (2016). Mountain groundwater resource investigation in northern area of Taiwan –Investigation and assessment of groundwater resources in Southern division of mountain area, Taiwan(3/4). New Taipei: Central Geological Survey, MOEA. (經濟部中央地質調查所、財團法人成大研究發展基金會、國立臺灣大學、嘉南藥理大學 (2016)。臺灣南段山區地下水資源調查-臺灣南段山區地下水資源調查與評估(2/4)。經濟部中央地質調查所報告 (委辦計畫編號:105-5226904000-04-02)。新北市:經濟部中央地質調查所。)
    Cervi, F., Berti, M., Borgatti, L., Ronchetti, F., Manenti, F., &Corsini, A. (2010). Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides, 7(4), 433–444. https://doi.org/10.1007/s10346-010-0207-y
    Chan, H. C., Chen, P. A., &Lee, J. T. (2018). Rainfall-induced landslide susceptibility using a rainfall-runoff model and logistic regression. Water (Switzerland), 10(10), 3–12. https://doi.org/10.3390/w10101354
    Chang, T. C., &Chao, R. J. (2006). Application of back-propagation networks in debris flow prediction. Engineering Geology, 85(3–4), 270–280. https://doi.org/10.1016/j.enggeo.2006.02.007
    Chawla, N.V, Bowyer, K. W., Hall, L. O., &Kegelmeyer, W. P. (2002). SMOTE : Synthetic Minority Over-sampling Technique. 16, 321–357.
    Chen, Wei, Pourghasemi, H. R., &Naghibi, S. A. (2018). A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bulletin of Engineering Geology and the Environment, 77(2), 647–664. https://doi.org/10.1007/s10064-017-1010-y
    Chen, Weitao, Li, X., Wang, Y., Chen, G., &Liu, S. (2014). Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China. Remote Sensing of Environment, 152, 291–301. https://doi.org/10.1016/j.rse.2014.07.004
    Cheng, Y. S., Yu, T. T., &Son, N. T. (2021). Random forests for landslide prediction in tsengwen river watershed, Central Taiwan. Remote Sensing, 13(2), 1–11. https://doi.org/10.3390/rs13020199
    Chiou, C. R., Song, G. Z. M., Chien, J. H., Hsieh, C. F., Wang, J. C., Chen, M. Y., Liu, H. Y., Yeh, C. L., Hsia, Y. J., &Chen, T. Y. (2010). Altitudinal distribution patterns of plant species in Taiwan are mainly determined by the northeast monsoon rather than the heat retention mechanism of Massenerhebung. Botanical Studies, 51(1), 89–97.
    Chou, W. C., Lin, W. T., &Lin, C. Y. (2009). Vegetation recovery patterns assessment at landslides caused by catastrophic earthquake: a case study in central Taiwan. Environ Monit Assess, 152(1–4), 245–257. https://doi.org/10.1007/s10661-008-0312-8
    Claessens, L., Heuvelink, G. B. M., Schoorl, J. M., &Veldkamp, A. (2005). DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surface Processes and Landforms, 30(4), 461–477. https://doi.org/10.1002/esp.1155
    Conforti, M., Pascale, S., Robustelli, G., &Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236–250. https://doi.org/10.1016/j.catena.2013.08.006
    Conoscenti, C., Angileri, S., Cappadonia, C., Rotigliano, E., Agnesi, V., &Märker, M. (2014). Gully erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology, 204, 399–411. https://doi.org/10.1016/j.geomorph.2013.08.021
    CRED and UNDRR. (2020). Human cost of disaster, an overview of the last 20 years 2000 - 2019.
    Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., &Lawler, J. J. (2007). Random Forests for Classification in Ecology. Ecology, 88(11), 2783–2792. https://doi.org/10.1890/07-0539.1
    Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., &Nishino, K. (2008). GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311–324. https://doi.org/10.1007/s00254-007-0818-3
    DenEeckhaut, M.Van, Marre, A., &Poesen, J. (2010). Comparison of two landslide susceptibility assessments in the Champagne–Ardenne region (France). Geomorphology, 115(1), 141–155. https://doi.org/https://doi.org/10.1016/j.geomorph.2009.09.042
    Diaz-Uriarte, R., &Alvarez de Andres, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3. https://doi.org/10.1186/1471-2105-7-3
    Drǎguţ, L., Tiede, D., &Levick, S. R. (2010). ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24(6), 859–871. https://doi.org/10.1080/13658810903174803
    Duan, G., Zhang, J., &Zhang, S. (2020). Assessment of Landslide Susceptibility Based on Multiresolution Image Segmentation and Geological Factor Ratings. International Journal of Environmental Research and Public Health, 17(21), 1–10. https://doi.org/10.3390/ijerph17217863
    Epifânio, B., Zêzere, J. L., &Neves, M. (2014). Susceptibility assessment to different types of landslides in the coastal cliffs of Lourinhã (Central Portugal). Journal of Sea Research, 93, 150–159. https://doi.org/10.1016/j.seares.2014.04.006
    Froude, M. J., &Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
    Garosi, Y., Sheklabadi, M., Pourghasemi, H. R., Besalatpour, A. A., Conoscenti, C., &VanOost, K. (2018). Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma, 330(May), 65–78. https://doi.org/10.1016/j.geoderma.2018.05.027
    Gini, C. (1997). Concentration and dependency ratios (in English). Rivista Di Politica Economica, 87, 769–789.
    Gislason, P. O., Benediktsson, J. A., &Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300. https://doi.org/doi.org/10.1016/j.patrec.2005.08.011
    Goodman, R. E., &(Firm), K. (1989). Introduction to Rock Mechanics. Wiley. https://books.google.com.tw/books?id=ndNRAAAAMAAJ
    Guzzetti, F. (2006). Landslide hazard and risk assessment. Rheinische Friedrich-Wilhelms-Universität Bonn.
    Guzzetti, F., Carrara, A., Cardinali, M., &Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1–4), 181–216. https://doi.org/10.1016/S0169-555X(99)00078-1
    Hong, H., Pradhan, B., Xu, C., &Tien Bui, D. (2015). Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133, 266–281. https://doi.org/10.1016/j.catena.2015.05.019
    Huang, H., Song, K., Yi, W., Long, J., Liu, Q., &Zhang, G. (2019). Use of multi-source remote sensing images to describe the sudden Shanshucao landslide in the Three Gorges Reservoir, China. Bulletin of Engineering Geology and the Environment, 78(4), 2591–2610. https://doi.org/10.1007/s10064-018-1261-2
    Hussin, H. Y., Zumpano, V., Reichenbach, P., Sterlacchini, S., Micu, M., vanWesten, C., &Bălteanu, D. (2016). Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology, 253, 508–523.
    Hutter, K., Svendsen, B., &Rickenmann, D. (1994). Debris flow modeling: A review. Continuum Mechanics and Thermodynamics, 8(1), 1–35. https://doi.org/10.1007/BF01175749
    Jaboyedoff, M., Michoud, C., Derron, M. H., Voumard, J., Leibundgut, G., Sudmeier-Rieux, K., Michoud, C., Nadim, F., &Leroi, E. (2016). Human-Induced Landslides: Toward the analysis of anthropogenic changes of the slope environment. Landslides and Engineered Slopes. Experience, Theory and Practice, 1, 217–232. https://doi.org/10.1201/b21520-20
    Justice, C. O., Townshed, J. R. G., Holben, B. N., &Tucker, C. J. (1985). Analysis of the phenology of global vegetation using meteorological satellite data. International Journal of Remote Sensing, 6(8), 1271–1318. https://doi.org/10.1080/01431168508948281
    Kavzoglu, T., Sahin, E. K., &Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425–439. https://doi.org/10.1007/s10346-013-0391-7
    Keefer, D. K., &Larsen, M. C. (2007). Assessing landslide hazards. Science, 316(5828), 1136–1138. https://doi.org/10.1126/science.1143308
    Koukis, G., &Ziourkas, C. (1991). Slope instability phenomena in Greece: A statistical analysis. Bulletin of the International Association of Engineering Geology - Bulletin de l’Association Internationale de Géologie de l’Ingénieur, 43(1), 47–60. https://doi.org/10.1007/BF02590170
    Kouli, M., Loupasakis, C., Soupios, P., &Vallianatos, F. (2010). Landslide hazard zonation in high risk areas of Rethymno Prefecture, Crete Island, Greece. Natural Hazards, 52(3), 599–621. https://doi.org/10.1007/s11069-009-9403-2
    Kukemilks, K, &Saks, T. (2013). Landslides and gully slope erosion on the banks of the Gauja River between the towns of Sigulda and Līgatne. Estonian Journal of Earth Sciences, 62(4), 231. https://doi.org/10.3176/earth.2013.17
    Kukemilks, Karlis, &Saks, T. (2013). Maalihked ja erosioonilised nõlvaprotsessid gauja jõe orus sigulda ning līgatne linna vahelisel lõigul. Estonian Journal of Earth Sciences, 62(4), 231–243. https://doi.org/10.3176/earth.2013.17
    Lai, M.-Z., Chang, M.-H., &NCKU Research and Development Foundation. (2010). Mountain groundwater resource investigation Fist Phase –Investigation and assessment of groundwater resources in Central division of mountain area, Taiwan(1/4). New Taipei: Central Geological Survey, MOEA. (賴明詔, 張閔翔, 財團法人成大研究發展基金會 (2010)。臺灣山區地下水資源調查研究整體計畫第一期:臺灣中段山區地下水資源調查與評估(1/4))。經濟部中央地質調查所報告 (委辦計畫編號:99-5226904000-06-02)。新北市:經濟部中央地質調查所。)
    Lee, C. H., Chen, W. P., &Lee, R. H. (2006). Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis. Environmental Geology, 51(1), 73–82. https://doi.org/10.1007/s00254-006-0305-2
    Lee, D. H., Lai, M. H., Wu, J. H., Chi, Y. Y., Ko, W.Te, &Lee, B. L. (2013). Slope management criteria for Alishan Highway based on database of heavy rainfall-induced slope failures. Engineering Geology, 162, 97–107. https://doi.org/10.1016/j.enggeo.2013.04.012
    Lee, S., &Lee, M.-J. (2006). Detecting landslide location using KOMPSAT 1 and its application to landslide-susceptibility mapping at the Gangneung area, Korea. Advances in Space Research, 38(10), 2261–2271. https://doi.org/10.1016/j.asr.2006.03.036
    Lee, S., Park, I., &Choi, J. K. (2012). Spatial prediction of ground subsidence susceptibility using an artificial neural network. Environmental Management, 49(2), 347–358. https://doi.org/10.1007/s00267-011-9766-5
    Liu, C. N., &Wu, C. C. (2008). Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environmental Geology, 55(4), 907–915. https://doi.org/10.1007/s00254-007-1042-x
    Mendes, R. M., Andrade, M. R. M. D., Tomasella, J., Moraes, M. A. E. D., &Scofield, G. B. (2018). Understanding shallow landslides in Campos do Jordaõ municipality – Brazil: Disentangling the anthropic effects from natural causes in the disaster of 2000. Natural Hazards and Earth System Sciences, 18(1), 15–30. https://doi.org/10.5194/nhess-18-15-2018
    Negi, H. S., Kumar, A., Rao, N. N., Thakur, N. K., Shekhar, M. S., &Snehmani. (2020). Susceptibility assessment of rainfall induced debris flow zones in Ladakh–Nubra region, Indian Himalaya. Journal of Earth System Science, 129(1). https://doi.org/10.1007/s12040-019-1277-4
    Nichol, J. E., Shaker, A., &Wong, M.-S. (2006). Application of high-resolution stereo satellite images to detailed landslide hazard assessment. Geomorphology, 76(1), 68–75. https://doi.org/https://doi.org/10.1016/j.geomorph.2005.10.001
    Palamakumbure, D., Flentje, P., &Stirling, D. (2015). Consideration of optimal pixel resolution in deriving landslide susceptibility zoning within the Sydney Basin, New South Wales, Australia. Computers and Geosciences, 82, 13–22. https://doi.org/10.1016/j.cageo.2015.05.002
    Paudel, U., Oguchi, T., &Hayakawa, Y. (2016). Multi-Resolution Landslide Susceptibility Analysis Using a DEM and Random Forest. International Journal of Geosciences, 07(05), 726–743. https://doi.org/10.4236/ijg.2016.75056
    Pawluszek-Filipiak, K., &Borkowski, A. (2020). On the importance of train-test split ratio of datasets in automatic landslide detection by supervised classification. Remote Sensing, 12(18). https://doi.org/10.3390/rs12183054
    Pham, B. T., Pradhan, B., Tien Bui, D., Prakash, I., &Dholakia, M. B. (2016). A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environmental Modelling and Software, 84, 240–250. https://doi.org/10.1016/j.envsoft.2016.07.005
    Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., &Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan province, Iran. Journal of Earth System Science, 122(2), 349–369. https://doi.org/10.1007/s12040-013-0282-2
    Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers and Geosciences, 51, 350–365. https://doi.org/10.1016/j.cageo.2012.08.023
    Psomiadis, E., Papazachariou, A., Soulis, K. X., Alexiou, D. S., &Charalampopoulos, I. (2020). Landslide mapping and susceptibility assessment using geospatial analysis and earth observation data. Land, 9(5). https://doi.org/10.3390/LAND9050133
    Raspini, F., Bianchini, S., Ciampalini, A., DelSoldato, M., Montalti, R., Solari, L., Tofani, V., &Casagli, N. (2019). Persistent Scatterers continuous streaming for landslide monitoring and mapping: the case of the Tuscany region (Italy). Landslides, 16(10), 2033–2044. https://doi.org/10.1007/s10346-019-01249-w
    Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., &Guzzetti, F. (2018). A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180(November 2017), 60–91. https://doi.org/10.1016/j.earscirev.2018.03.001
    Reis, S., Yalcin, A., Atasoy, M., Nisanci, R., Bayrak, T., Erduran, M., Sancar, C., &Ekercin, S. (2012). Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey). Environmental Earth Sciences, 66(7), 2063–2073. https://doi.org/10.1007/s12665-011-1432-y
    Ronchetti, F., Borgatti, L., Cervi, F., Gorgoni, C., Piccinini, L., Vincenzi, V., &Corsini, A. (2009). Groundwater processes in a complex landslide, northern Apennines, Italy. Natural Hazards and Earth System Science, 9(3), 895–904. https://doi.org/10.5194/nhess-9-895-2009
    Roy, J., Saha, S., Arabameri, A., Blaschke, T., & Bui, D. T. (2019). A Novel Ensemble Approach for Landslide Susceptibility Mapping ( LSM ) in Darjeeling and. Remote Sensing, 11(23), 2886.
    Roy, J., Saha, S., Arabameri, A., Blaschke, T., &Bui, D. T. (2019). A Novel Ensemble Approach for Landslide Susceptibility Mapping (LSM) in Darjeeling and Kalimpong Districts, West Bengal, India. In Remote Sensing (Vol. 11, Issue 23). https://doi.org/10.3390/rs11232866
    Rozos, D., Bathrellos, G. D., &Skillodimou, H. D. (2011). Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: A case study from the Eastern Achaia County of Peloponnesus, GREECE. Environmental Earth Sciences, 63(1), 49–63. https://doi.org/10.1007/s12665-010-0687-z
    Sabatakakis, N., Koukis, G., &Mourtas, D. (2005). Composite landslides induced by heavy rainfalls in suburban areas: City of Patras and surrounding area, western Greece. Landslides, 2(3), 202–211. https://doi.org/10.1007/s10346-005-0002-3
    Saito, H., Nakayama, D., &Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology, 109(3), 108–121. https://doi.org/http://dx.doi.org/10.1016/j.geomorph.2009.02.026
    Samia, J., Temme, A., Bregt, A., Wallinga, J., Guzzetti, F., Ardizzone, F., &Rossi, M. (2016). Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory. Landslides, 14(2), 547–558. https://doi.org/10.1007/s10346-016-0739-x
    Schulz, W. H. (2007). Landslide susceptibility revealed by LIDAR imagery and historical records, Seattle, Washington. Engineering Geology, 89(1–2), 67–87. https://doi.org/10.1016/j.enggeo.2006.09.019
    Schuster, R. L., &Fleming, R. W. (1986). Economic Losses and Fatalities Due to Landslides. Environmental and Engineering Geoscience, xxiii(1), 11–28. https://doi.org/10.2113/gseegeosci.xxiii.1.11
    Shahabi, H., &Hashim, M. (2015). Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific Reports, 5, 1–15. https://doi.org/10.1038/srep09899
    Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Taylor & Francis. https://books.google.com.tw/books?id=e-xsrjsL7WkC
    Skilodimou, H. D., Bathrellos, G. D., Koskeridou, E., Soukis, K., &Rozos, D. (2018). Physical and Anthropogenic Factors Related to Landslide Activity in the Northern Peloponnese, Greece. In Land (Vol. 7, Issue 3). https://doi.org/10.3390/land7030085
    Taalab, K., Cheng, T., &Zhang, Y. (2018). Mapping landslide susceptibility and types using Random Forest. Big Earth Data, 2(2), 159–178. https://doi.org/10.1080/20964471.2018.1472392
    Taib, S. N. L., Selaman, O. S., Chen, C. L., Lim, R., &Awang Ismail, D. S. (2017). Landslide Susceptibility in Relation to Correlation of Groundwater Development and Ground Condition. Advances in Civil Engineering, 2017. https://doi.org/10.1155/2017/4320340
    Tang, C. L., Hu, J. C., Lin, M. L., Angelier, J., Lu, C. Y., Chan, Y. C., &Chu, H. T. (2009). The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation. Engineering Geology, 106(1–2), 1–19. https://doi.org/10.1016/j.enggeo.2009.02.011
    Tarolli, P., &Sofia, G. (2016). Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology, 255, 140–161. https://doi.org/10.1016/j.geomorph.2015.12.007
    Tien Bui, D., Pradhan, B., Lofman, O., &Revhaug, I. (2012). Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and nave bayes models. Mathematical Problems in Engineering, 2012. https://doi.org/10.1155/2012/974638
    Tien Bui, D., Tuan, T. A., Klempe, H., Pradhan, B., &Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378. https://doi.org/10.1007/s10346-015-0557-6
    Tsai, F., Lai, J.-S., Chen, W. W., &Lin, T.-H. (2013). Analysis of topographic and vegetative factors with data mining for landslide verification. Ecological Engineering, 61, 669–677. https://doi.org/10.1016/j.ecoleng.2013.07.070
    Tseng, C. W., Song, C. E., Wang, S. F., Chen, Y. C., Tu, J. Y., Yang, C. J., &Chuang, C. W. (2020). Application of high-resolution radar rain data to the predictive analysis of landslide susceptibility under climate change in the Laonong Watershed, Taiwan. Remote Sensing, 12(23), 1–23. https://doi.org/10.3390/rs12233855
    Varnes, D. J. (1984). LANDSLIDE HAZARD ZONATION: A REVIEW OF PRINCIPLES AND PRACTICE. In Natural Harzards. UNESCO, Paris. UNESCO Press.
    Wang, L., Hwang, J. H., Luo, Z., Juang, C. H., &Xiao, J. (2013). Probabilistic back analysis of slope failure - A case study in Taiwan. Computers and Geotechnics, 51(3), 12–23. https://doi.org/10.1016/j.compgeo.2013.01.008
    Wang, S., Zhang, K., vanBeek, L. P. H., Tian, X., &Bogaard, T. A. (2020). Physically-based landslide prediction over a large region: Scaling low-resolution hydrological model results for high-resolution slope stability assessment. Environmental Modelling & Software, 124, 104607. https://doi.org/https://doi.org/10.1016/j.envsoft.2019.104607
    Wood, J. (1996). The Geomorphological Characterisation of Digital Elevation Models. University of Leicester. https://books.google.com.tw/books?id=ZfQKSQAACAAJ
    Xiong, K., Adhikari, B. R., Stamatopoulos, C. A., Zhan, Y., Wu, S., Dong, Z., &Di, B. (2020). Comparison of different machine learning methods for debris flow susceptibility mapping: A case study in the Sichuan Province, China. Remote Sensing, 12(2), 1–20. https://doi.org/10.3390/rs12020295
    Yilmaz, I. (2010). The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environmental Earth Sciences, 60(3), 505–519. https://doi.org/10.1007/s12665-009-0191-5
    Zare, M., Pourghasemi, H. R., Vafakhah, M., &Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences, 6(8), 2873–2888. https://doi.org/10.1007/s12517-012-0610-x
    Zhang, Y., Ge, T., Tian, W., &Liou, Y. A. (2019). Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China. Remote Sensing, 11(23), 1–26. https://doi.org/10.3390/rs11232801
    Zhong, C., Liu, Y., Gao, P., Chen, W., Li, H., Hou, Y., Nuremanguli, T., &Ma, H. (2020). Landslide mapping with remote sensing: challenges and opportunities. International Journal of Remote Sensing, 41(4), 1555–1581. https://doi.org/10.1080/01431161.2019.1672904

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE