研究生: |
陳冠維 Chen, Guan-Wei |
---|---|
論文名稱: |
掃描式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子植佈技術之建立及材料微/奈米機械性質檢測 Applications of the Scanning Probe Microscope to Examine the 304 Stainless steel Implanted with Nitrogen Plasma:Inspection Techniques for Micro/Nano Mechanical Properties and Tribological Behavior |
指導教授: |
林仁輝
Lin, Jen-Fin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 摩擦力 、奈米機械性質 、離子植佈 、奈米壓痕 、形貌效應 、刮痕 、掃描式探針顯微鏡 |
外文關鍵詞: | Ion implantation, SPM, AFM, FFM, scratch, nano mechanical properties, nano indentation |
相關次數: | 點閱:148 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要可分為三個部份:第一部份發明了一種數據處理的方式,成功地消除了樣品表面形貌對掃瞄式探針顯微術摩擦力顯微鏡的影響,因此增強了摩擦力顯微鏡在表面材料定性分析上的準確度。第二部份則是目前國內極少研究的電漿浸泡式離子植入金屬材料表面改質技術之研究,並針對離子注入之製程參數對改質層之影響做了完整地討論。第三部份為建立微/奈米機械性質的量測方法,藉由奈米壓痕、刮痕試驗來得到改質層之硬度(Hardness)、楊氏模數(Young’s modulus)與改質後試件之抗磨耗性能。
掃瞄式探針顯微術在奈米科技的發展上一直扮演著相當重要的角色,利用其極高的靈敏度與原子級的解析度,我們可根據不同的材料,摩擦力也不相同的原理,得到在材料表面的摩擦力分佈,進一步分析出材料在表面的分佈與變化情形。 但是一般的試片並無法達到完全平整的理想狀態,所以當使用摩擦力顯微鏡時,試片表面的粗糙度、曲度等等微細形貌變化也會嚴重影響到摩擦力的分佈狀況,使分析表面材質變化時容易產生誤判。
本研究已建立一套方法,從形貌變化與摩擦力變化中找出關係,利用數據後處理的方式把形貌在摩擦力上的影響程度減至最小,讓我們可以正確地由摩擦力分佈來判斷表面材質的變化情形,以便對離子植入後所形成的改質層做材料的定性分析。由於是數據後處理,無論新舊機台量測資料皆可使用是本方法最大的特色。不同於需要超高真空環境才能工作的貴重分析儀器,摩擦力顯微鏡提供了另一種在常壓下簡單又快速的材料定性分析方法。
離子植入材料製作部份,選定浸入式離子植入法,將氮離子注入304不鏽鋼內以增加其強度與抗腐蝕性能。利用上述摩擦力顯微鏡之方法,配合輝光放電分光儀(Glow discharge spectroscopy, GDS)的縱深分析來驗證改質層厚度定性分析之結果。在量測其機械性質時,使用奈米測試機做奈米壓痕、奈米刮痕試驗,可減少底材效應,以得到較正確的改質層機械性質,並且完整地探討植入溫度、植入電壓與植入時間三組製程參數對改質層之厚度以及機械性質的影響,以便歸納出最佳的製程條件,來提升離子植入材料表面改性之效果。
目前本實驗已經成功地把形貌變化對摩擦力顯微鏡的影響去除,並將摩擦力顯微鏡的定性分析應用於離子植入後的改質層以得到厚度。而在製程方面,304不鏽鋼在經過離子植入後,機械性質有明顯的提升。本實驗並藉由奈米機械性質與改質層定性分析的量測,得到了植入溫度、植入電壓、植入時間對其機械性質與改質層厚度之影響。
There are three parts in this study. First is the invented signal processing method used to eliminate the effect of surface profile to friction force mode of Scanning Probe Microscope (SPM). This method improves the accuracy of analysis for sample surface material successfully. Second is the research for technology of plasma immersion ion implantation which is used rarely. This study gives detail discussion for effects of processing parameters of ion implantation to the formation layer. Third is establishing measuring procedure for micro/nano mechanical properties. The procedure provides hardness, Young’s modulus, and wear resistance of formation layer by indentation and scratch test in nanometer level.
SPM plays important rule in the development of nanotechnology because of its atomic leveled sensibility and resolution. We can analyze the distribution of sample’s material according to the different friction force due to different material. However, the friction force depends on not only smaple’s material but also surface roughness, curvature…etc. There is no sample with exactly flat surface in SPM scale. This research develops a method to eliminate the effect of friction force due to surface profile according to the relation between them. The friction force data can be used to obtain the information of surface material distribution and the qualitative analysis of formation layer through signal processing. This method is a signal post-processing so that it is suitable for every SPM.
For the plasma immersion ion implantation procedure, nitrogen ion is chosen to dope 304 stainless steel in order to increase its strength and corrosion resistance. To examine the formation layer after ion implantation, we use both friction mode of SPM and depth profile analysis by Glow Discharge Spectroscopy (GDS). To measure the mechanical properties, we use indentation and scratch test in nanometer level to avoid from substrate effect. We discuss how the procedure parameters, such as bios voltage, temperature, and duration, affect thickness and mechanical properties of formation layer. We also induce the optimal procedure parameters for ion implantation.
This study eliminates profile effect to friction force of SPM and applies to analyze thickness of formation layer. In the other hand, the measuring method for mechanical properties in nanometer scale is established and it is applied to optimize the procedure parameters such as bios voltage, temperature, and duration.
1. 莊達人, “VLSI製造技術”, 高立圖書有限公司, (2001), p324.
2. Smidt F.A.et al, Nucl.Instrum.Meth., B6 (1981), p70.
3. Herman H., Nuel.Instrum.Meth., 182/183 (1981), p887.
4. 張通和,吳瑜光,“離子注入表面優化技術”, 冶金工業出版社, (1993).
5. 李春穎,許煙明,陳忠仁譯,“材料科學與工程”, 高立圖書有限公司,(2001).
6. 張通和,吳瑜光,“離子束材料改性科學和應用”, 北京:科學出版社, (1999).
7. 曾煥華,“電漿的世界”,第一章, 銀禾文化事業有限公司, 台北台灣, (1987).
8. B. Chapman, Glow Discharge Process, John Wiley & Sons, Inc, United State of America, (1980), Chapter 5.
9. J. R. Roth, Industrial Plasma Engineering-Volume 1: Principles, Institute of Physics Publishing, London, (1995).
10. H.R.Kaufman , J. Vac. Sci. Technol. A4[3] (1986) , p.764.
11. 潘錦昌, 低溫離子束沈積含氮類鑽碳之微-奈米機械、材料性質及磨潤性能之研究, 國立成功大學, 碩士論文, (2002).
12. C. M. Mate, Phys. Rev. Lett., Vol.59(1987).
13. B. Bhushan, “Handbook of Micro/Nano Tribology”, (1995).
14. G. Binnig, H. Rohrer, Ch. Gerber,E. Weibel, Phys. Rev. Lett., Vol.49(1982), pp.57-61.
15. G. Binnig, C. F. Quate, Ch. Gerber, Phys. Rev. Lett., Vol.56(1986), pp.930-933.
16. C. M. Mate, G. M. McClelland, R. Erlandsson, S. Chiang, Phys. Rev. Lett., Vol.59(1987), pp.1942-1945.
17. J. Ruan, B. Bhushan, J.Appl.Phys., Vol.76(1994), pp.5022-5035.
18. J. Ruan, B. Bhushan, J.Appl.Phys., Vol.76(1994), pp.8117-8120.
19. X. Liu, Surface and Coatings Technology, Vol.131(2002), pp.261-266.
20. T. Ebisawa, R. Saikudo, Surface and Coatings Technology, Vol.86-87(1996), pp.622-627.
21. M. Li, Emile J. Knystautas, Madhavarao Krishnadev, Surface Coatings Technology, Vol.138(2001), pp.220-228.
22. J.A. Garcia, A. Guette, A. Medrano, C. Labrugere, M. Rico, M. Lahaye, R. Sanchez, A. Martinez, R.J. Rodriguez, Vacuum, Vol.64(2002), pp.343-351.
23. A.O. Olofinjana, Z. Chen, J.M. Bell, Materials Letters, Vol.53(2002), pp.385-391.
24. X.B. Tian, Z.M. Zeng, T. Zhang, B.Y. Tang, P.K. Chu, Thin Solid Films, Vol.366(2000), pp.150-154.
25. J.M. Priest, M.J. Baldwin, M.P. Fewell, Surface and Coatings Technology, Vol.145(2001), pp.152-163.
26. B. Larisch, U. Brusky, H.-J. Spies, Surface and Coatings Technology, Vol.116-119(1999), pp.205-211.
27. C. Blawert, B.L. Mordike, Surface and Coatings Technology, Vol.116-119(1999), pp.352-360.
28. R. Gunzel, M. Betzl, I. Alphonsa, B. Ganguly, P. I. John, S. Mukherjee, Surface and Coatings Technology, Vol.112(1999), pp.307-309.
29. C. Blawert, B. L. Mordike, U. Rensch, R. Wunsch, R. Wiedemann, H. Oettel, Surface and Coatings Technology, Vol.131(2000), pp.334-339.
30. K. Ram Mohan Rao, S. Mukherjee, P. M. Raole, I. Manna, Surface and Coating Technology,Vol.150(2002), pp.80-87.
31. X. B. Tian, T. X. Leng, T. K. Kwok, L. P. Wang, B. Y. Tang, P. K. Chu, Surface and Coating Technology, Vol.135(2001), pp.178-183.
32. I. N. Sneddon, Int.J. Engng Sci., Vol.3(1965), p.47.
33. D. Gordon, Properties and Growth of Diamond,”INSPEC, the Institution of Electrical Engineers, London, United Kindom. (1994).
34. G. M. Pharr, W. C. Oliver and F. R. Brotzen, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,”J. Mater. Res., Vol.7(1992), pp.613-617.
35. R. B. King,“Elastic Analysis of Some Punch Problems for A layered Medium”, Int.J.Solids Structure, Vol.23, No.12(1987),pp.1657-1664.
36. W. C. Oliver, “An improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J.Mater.Res., Vol.7, No.6,(1992), pp.1564-1583.
37. J. B. Pethica, R. Hutchings and W. C. Oliver, Phil. Mag. A, Vol.48(1983), p.593.
38. V. J. Morris, A. R. Kirby, A. P. Gunning, Atomic Force Microscopy for Biologists, Imperial College Press: London,(1999).