| 研究生: |
吳維軒 Wu, Wei-Shiuan |
|---|---|
| 論文名稱: |
高溫銲料銲點界面反應及組織研究 Investigation of interfacial reaction and microstructure of high temperature solder joint |
| 指導教授: |
李驊登
Lee, Hwa-Teng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | Pb-Sn高溫銲料 、微結構 、界面反應 、阻障層 |
| 外文關鍵詞: | Pb-Sn high temperature solder, microstructure, interfacial reaction, diffusion barrier |
| 相關次數: | 點閱:158 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由高溫熱儲存實驗探討高溫銲料95Pb-5Sn微結構組織以及其與Ni/Cu金屬層銲接後的界面微觀結構變化,同時利用熱浸接合(Hot Dipping)試件評估銲點接合強度與其破斷模式。將直徑1.5mm的銅棒利用無電鍍鎳的方式分別鍍上不同厚度(2μm、1μm、0.5μm)的鎳層,並透過自行熔煉的95Pb-5Sn銲料熔融成液態以熱浸接合的方式製成單一銲點之試件,之後進行200℃高溫熱儲存實驗。
實驗結果顯示95Pb-5Sn在空冷冷卻的析出過程中,固溶於α-Pb基地內的β-Sn會有足夠的時間於基地內緩慢析出,會在α-Pb晶粒中以線條狀且方向大致相同的形貌分佈其中。隨著高溫熱儲存時間的增加晶粒有持續粗大化的現象,且能發現在晶界上之析出物有粗大化(Coarsening)的情形,而晶界處周圍的晶粒內部β-Sn析出物分佈有減少的情況,出現無析出區(Precipitate-Free Zones)。
銲料與Ni/Cu銲點接合界面處生成波浪狀之Ni與Sn的金屬間化合物,而無電鍍鎳層中多餘的P原子會被往IMC底下排,形成一較黑的富鏻層(P-rich Layer)層,隨著熱儲存時間的增加IMC層厚度逐漸成長並且成為為多邊形的顆粒,400小時之後約增長至1.58μm。在400小時高溫熱儲存實驗後2μm、1μm之Ni層依然能保有阻障之能力,但0.5μm厚度鎳層則在經過200小時後即喪失阻障之效果。在剛接合完之銲點的拉伸破壞位置大部份皆在銲料本身,破壞處發生的韌窩狀組織底部相當乾淨並未有任何IMC化合物,隨著高溫熱儲存時間的增長破裂模式產生轉變,至400小時之後發生破壞處皆在界面上出現,破斷處開始出現IMC的金屬間化合物,且銲點接合強度上亦有降低的趨勢。
This research is to discuss the 95Pb-5Sn microstructure and solid/solid interfacial microstructure variation of 95Pb-5Sn solder combining with Ni/Cu UBM. Diffusion barrier Ni layer was coating on copper rods by electroless plating. Using the solders to join two rods whose diameter is 1.5mm. Those solder joints are stored isothermally at 200℃for up to 400 h and evaluate different thickness (2μm、1μm、0.5μm) of diffusion barrier prevent reaction between tin and copper ability and the tensile strength of solder joint.
Experimental results show that the β-Sn precipitates with lamella in the α-Pb due to the slower cooling rate during high temperature stored end of experiment. After 95Pb-5Sn solder are combined with Ni/Cu, Sn atoms react with Ni atoms to form Ni and Sn intermetallic compound. Thus remainder P atoms are exhausted toward electroless Ni layer to produce dark P-rich layer. The thickness of interfacial intermetallic compound and P-rich layer raised with high temperature storage time increasing. After aged at 200℃ for 400h, the 2μm、1μm thickness diffusion barrier remains ability. However after aged at 200℃ for 200h, the 0.5μm diffusion barrier loses function that prevent reaction between tin and copper.
The strength of joint result show that the tensile strength of the joint decrease distinctly after 200℃ thermal storage. The fracture position of solder joints at as-soldered occurred at the inside of solder. However, the fracture position tended to occur at the interfacial intermetallic compound surface with high temperature storage time increase.
[1] 鍾文仁, 陳佑任, IC 封裝製程與 CAE 應用, 全華科技圖書股份有限公司, 台北, 2005.
[2] 許伯勳, “金鍺共晶銲料與銅基材之界面反應及金-銅-鍺三元系統之相平衡,” 國立成功大學材料科學及工程學系, 碩士論文, 2013.
[3] G. Zeng, S. McDonald, and K. Nogita, “Development of high-temperature solders: Review,” Microelectronics Reliability, vol. 52, no. 7, pp. 1306-1322, 2012.
[4] K. Suganuma, S.-J. Kim, and K.-S. Kim, “High-temperature lead-free solders: properties and possibilities,” JOM Journal of the Minerals, Metals and Materials Society, vol. 61, no. 1, pp. 64-71, 2009.
[5] S.-J. Kim, K.-S. Kim, S.-S. Kim et al., “Characteristics of Zn-Al-Cu alloys for high temperature solder application,” Materials transactions, vol. 49, no. 7, pp. 1531-1536, 2008.
[6] Himikatus.ru, http://www.himikatus.ru/art/phase-diagr1.php.
[7] M. Rettenmayr, P. Lambracht, B. Kempf et al., “Zn-Al based alloys as Pb-free solders for die attach,” Journal of electronic materials, vol. 31, no. 4, pp. 278-285, 2002.
[8] Y. Takaku, K. Makino, K. Watanabe et al., “Interfacial reaction between Zn-Al-based high-temperature solders and Ni substrate,” Journal of Electronic Materials, vol. 38, no. 1, pp. 54-60, 2009.
[9] Y. Takaku, L. Felicia, I. Ohnuma et al., “Interfacial reaction between Cu substrates and Zn-Al base high-temperature Pb-free solders,” Journal of Electronic Materials, vol. 37, no. 3, pp. 314-323, 2008.
[10] J.-M. Song, H.-Y. Chuang, and T.-X. Wen, “Thermal and tensile properties of Bi-Ag alloys,” Metallurgical and Materials Transactions A, vol. 38, no. 6, pp. 1371-1375, 2007.
[11] V. Chidambaram, J. Hattel, and J. Hald, “High-temperature lead-free solder alternatives,” Microelectronic Engineering, vol. 88, no. 6, pp. 981-989, 2011.
[12] Y. Liu, J. Teo, S. Tung et al., “High-temperature creep and hardness of eutectic 80Au/20Sn solder,” Journal of Alloys and Compounds, vol. 448, no. 1, pp. 340-343, 2008.
[13] S. Kim, K.-S. Kim, S.-S. Kim et al., “Improving the reliability of Si die attachment with Zn-Sn-based high-temperature Pb-free solder using a TiN diffusion barrier,” Journal of electronic materials, vol. 38, no. 12, pp. 2668-2675, 2009.
[14] M. Abtew, and G. Selvaduray, “Lead-free solders in microelectronics,” Materials Science and Engineering: R: Reports, vol. 27, no. 5, pp. 95-141, 2000.
[15] J. H. Lau, “Flip chip technologies, ” McGraw-Hill Professional, USA , 1996.
[16] P. A. Totta, “Advances in Electronic Packaging, ”ASME , New York , 1997.
[17] M. Pecht, “Integrated circuit, hybrid, and multichip module package design guidelines: a focus on reliability:” Wiley-Interscience, New York, 1994.
[18] H. Ashassi-Sorkhabi, H. Dolati, N. Parvini-Ahmadi et al., “Electroless deposition of Ni–Cu–P alloy and study of the influences of some parameters on the properties of deposits,” Applied surface science, vol. 185, no. 3, pp. 155-160, 2002.
[19] C.-J. Chen, and K.-L. Lin, “Electroless Ni-Cu-P barrier between Si/Ti/Al pad and Sn-Pb flip-chip solder bumps,” Components and Packaging Technologies, IEEE Transactions , vol. 24, no. 4, pp. 691-697, 2001.
[20] N.-C. Lee, “Getting Ready for Lead-free Solders,” Soldering & Surface Mount Technology, vol. 9, no. 2, pp. 65-69, 1997.
[21] J. H. Lau, and Y.-H. Pao, "Solder joint reliability of BGA, CSP, flip chip, and fine pitch SMT assemblies," McGraw-Hill Professional Publishing, USA , 1997.
[22] C. Hua Zhong, and S. Yi, “Solder joint reliability of plastic ball grid array packages,” Soldering & surface mount technology, vol. 11, no. 1, pp. 44-48, 1999.
[23] R. H. Esser, A. Dimoulas, N. Strifas et al., “Materials interfaces in flip chip interconnects for optical components; performance and degradation mechanisms,” Microelectronics Reliability, vol. 38, no. 6, pp. 1307-1312, 1998.
[24] R. Swalin, “Thermodynamics of solids, ” Wiley-Interscience, New York, 1972.
[25] C. Liu, C. Ho, W. Chen et al., “Reflow soldering and isothermal solid-state aging of Sn-Ag eutectic solder on Au/Ni surface finish,” Journal of Electronic Materials, vol. 30, no. 9, pp. 1152-1156, 2001.
[26] J. Park, C. Yang, J. Ha et al., “Investigation of interfacial reaction between Sn-Ag eutectic solder and Au/Ni/Cu/Ti thin film metallization,” Journal of electronic materials, vol. 30, no. 9, pp. 1165-1170, 2001.
[27] W. K. Choi, and H. M. Lee, “Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5 Ag and Ni/Cu substrate,” Journal of electronic materials, vol. 28, no. 11, pp. 1251-1255, 1999.
[28] H.-T. Luo, and S.-W. Chen, “Phase equilibria of the ternary Ag-Cu-Ni system and the interfacial reactions in the Ag-Cu/Ni couples,” Journal of materials science, vol. 31, no. 19, pp. 5059-5067, 1996.
[29] I. A. Aksay, C. E. Hoge, and J. A. Pask, “Wetting under chemical equilibrium and nonequilibrium conditions,” The Journal of Physical Chemistry, vol. 78, no. 12, pp. 1178-1183, 1974.
[30] J. H. Lau, "Handbook of Fine Pitch Surface Mount Technology," Kluwer Academic Publishers, 1994.
[31] H. H. Manko, "Solders and soldering," McGraw-Hill, New York, USA , 1979.
[32] K.-C. Liu, and J.-G. Duh, “Microstructural evolution in Sn/Pb solder and Pb/Ag thick film conductor metallization,” Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, vol. 14, no. 4, pp. 703-707, 1991.
[33] R. J. Klein Wassink, "SOLDERING IN ELECTRONICS," Electrochemical Publ Ltd, Ayr, Scott, 1984.
[34] P.Nash, and A.Nash, “Bulletin of Binary Vanadium Alloys,” Vol. 6, no. 4, pp. pp.350-359, 1985.
[35] S. Kang, R. Rai, and S. Purushothaman, “Interfacial reactions during soldering with lead-tin eutectic and lead (Pb)-free, tin-rich solders,” Journal of Electronic Materials, vol. 25, no. 7, pp. 1113-1120, 1996.
[36] P. Kay, and C. Mackay, “The growth of intermetallic compounds on common basis materials coated with tin and tin-lead alloys,” Trans. Inst. Met. Fin, vol. 54, no. 1, pp. 68-74, 1976.
[37] W. Tomlinson, and H. Rhodes, “Kinetics of intermetallic compound growth between nickel, electroless, Ni-P, electroless Ni-B and tin at 453 to 493 K,” Journal of materials science, vol. 22, no. 5, pp. 1769-1772, 1987.
[38] Ž. Marinković, and V. Simić, “Room temperature interactions in Ni/metal thin film couples,” Thin Solid Films, vol. 98, no. 2, pp. 95-100, 1982.
[39] S. Bader, W. Gust, and H. Hieber, “Rapid formation of intermetallic compounds interdiffusion in the Cu Sn and Ni Sn systems,” Acta metallurgica et materialia, vol. 43, no. 1, pp. 329-337, 1995.
[40] S. Kang, and V. Ramachandran, “Growth kinetics of intermetallic phases at the liquid Sn and solid Ni interface,” Scripta Metallurgica, vol. 14, no. 4, pp. 421-424, 1980.
[41] K.-L. Lin, and Y.-C. Liu, “Reflow and property of Al/Cu/electroless nickel/Sn-Pb solder bumps,” Advanced Packaging, IEEE Transactions on, vol. 22, no. 4, pp. 568-574, 1999.
[42] M. He, A. Kumar, P. Yeo et al., “Interfacial reaction between Sn-rich solders and Ni-based metallization,” Thin Solid Films, vol. 462, pp. 387-394, 2004.
[43] K.-L. Lin, and L. Yi-Cheng, “Reflow and property of Al/Cu/electroless nickel/Sn-Pb solder bumps,” Advanced Packaging, IEEE Transactions on, vol. 22, no. 4, pp. 568-574, 1999.
[44] T. B. Massalski, H. Okamoto, P. Subramanian et al., “Binary alloy phase diagrams. ” ASM International, vol. 3, 1990.
[45] A. VanBeek, A. Stolk, and J. VanLoo, “Multiphase Diffusion in the Systems Fe--Sn and Ni--Sn,” Zeitschrift fur Metallkunde, vol. 73, no. 7, pp. 439-444, 1982.
[46] C.-W. Hwang, J.-G. Lee, K. Suganuma et al., “Interfacial microstructure between Sn-3Ag-xBi alloy and Cu substrate with or without electrolytic Ni plating,” Journal of electronic materials, vol. 32, no. 2, pp. 52-62, 2003.
[47] C. Ho, S. Yang, and C. Kao, "Interfacial reaction issues for lead-free electronic solders," Lead-Free Electronic Solders, pp. 155-174: Springer, 2007.
[48] K. N. Tu, “Cu/Sn interfacial reactions: thin-film case versus bulk case,” Materials Chemistry and Physics, vol. 46, no. 2–3, pp. 217-223, 1996.
[49] K. N. Tu, “Interdiffusion and reaction in bimetallic Cu-Sn thin films,” Acta Metallurgica, vol. 21, no. 4, pp. 347-354, 1973.
[50] K. N. Tu, and R. D. Thompson, “Kinetics of interfacial reaction in bimetallic CuSn thin films,” Acta Metallurgica, vol. 30, no. 5, pp. 947-952, 1982.
[51] P. T. Vianco, K. L. Erickson, and P. L. Hopkins, “Solid state intermetallic compound growth between copper and high temperature, tin-rich solders—part I: Experimental analysis,” Journal of Electronic Materials, vol. 23, no. 8, pp. 721-727, 1994.
[52] P. Vianco, P. Hlava, and A. Kilgo, “Intermetallic compound layer formation between copper and hot-dipped 100In, 50In-50Sn, 100Sn, and 63Sn-37Pb coatings,” Journal of Electronic Materials, vol. 23, no. 7, pp. 583-594, 1994.
[53] J. O. G. Parent, D. D. L. Chung, and I. M. Bernstein, “Effects of intermetallic formation at the interface between copper and lead-tin solder,” Journal of Materials Science, vol. 23, no. 7, pp. 2564-2572, 1988.
[54] H. K. Kim, and K. N. Tu, “Rate of consumption of Cu in soldering accompanied by ripening,” Applied Physics Letters, vol. 67, no. 14, pp. 2002-2004, 1995.
[55] G. O. Mallory, and J. B. Hajdu, Electroless plating: fundamentals and applications: William Andrew, 1990.
[56] T. Saito, E. Sato, M. Matsuoka et al., “Electroless deposition of Ni–B, Co–B and Ni–Co–B alloys using dimethylamineborane as a reducing agent,” Journal of Applied Electrochemistry, vol. 28, no. 5, pp. 559-563, 1998.
[57] Y. Z. Zhang, Y. Y. Wu, K. N. Sun et al., “Characterization of electroless Ni--P--PTFE composite deposits,” Journal of Materials Science Letters, vol. 17, no. 2, pp. 119-122, 1998.
[58] M. Paunovic, and I. Ohno, Proceedings of the Symposium on Electroless Deposition of Metals and Alloys: Electrochemical Society, 1988.
[59] J. H. Lau, “Solder joint reliability of flip chip and plastic ball grid array assemblies under thermal, mechanical, and vibrational conditions,” Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions, vol. 19, no. 4, pp. 728-735, 1996.
[60] J. H. Lau, Solder joint reliability: theory and applications: Springer Science & Business Media, 1991.
[61] 王照中, “電子產品之溫度循環試驗規範簡介,” 電子檢測與品管, no. 42, pp. pp.44-48, 2000.
[62] N. Iosipescu, “New Accurate Procedure for Single Shear Testing of Metals,” Journal of materials science, vol. Vol. 3, no. No. 2, pp. pp.537-567, 1967.
[63] A. S. D5379/D5379M-98, “Standard Test Method for Shear properties of Composite Materials by the V-Notched Beam Method,” American Society for Testing of Materials, 1998.
[64] A. S. C1292-00, “Standard Test Method for Shear strength of Continuous Fiber-Reinforced Advanced Ceramics at Ambient Temperature,” American Society for testing of Materials American Society for Testing of Materials, 2000.
[65] Z. Guo, A. F. Sprecher, and H. Conrad, “Plastic Deformation Kinetics of Eutectic Pb-Sn Solder Joints in Monotonic Loading and Low-Cycle Fatigue,” Journal of Electronic Packaging, vol. 114, no. 2, pp. 112-117, 1992.
[66] Ö. Ünal, D. Barnard, and I. Anderson, “A shear test method to measure shear strength of metallic materials and solder joints using small specimens,” Scripta Materialia, vol. 40, no. 3, pp. 271-276, 1999.
[67] K. G. S. Dennis R. Olsen, “United State Patent,” Patent Number : 4,170,472, 1979.
[68] P. Tae-Sang, and L. Soon-Bok, "Mechanical fatigue tests of solder joint under mixed-mode loading cases." pp. 438-443.
[69] A. F1269-89, “Test Methods for Destructive Shear Testing of Ball Bonds,” American Society for testing of Materials, 1995.
[70] M. O. Alam, Y. C. Chan, and K. C. Hung, “Reliability study of the electroless Ni–P layer against solder alloy,” Microelectronics Reliability, vol. 42, no. 7, pp. 1065-1073, 2002.
[71] 李驊登, 陳明宏, 饒慧美, 廖天龍, "界面金屬間化合物對錫銲接點破壞行為之影響," 第七屆破壞科學研討會, 2002.
[72] H. J. Frost, R. T. Howard, P. R. Lavery et al., “Creep and tensile behavior of Lead-rich lead-tin solder alloys,” Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, vol. 11, no. 4, pp. 371-379, 1988.
[73] 王怡茹, “高溫鉛錫銲料之機械性質與顯微組織研究,” 國立成功大學機械所, 碩士論文, 2015.
[74] D. Turnbull, and H. Treaftis, “Kinetics of precipitation of tin from lead-tin solid solutions,” acta metallurgica, vol. 3, no. 1, pp. 43-54, 1955.
[75] D. R. Frear, J. B. Posthill, and J. W. Morris, “The microstructural details of β-Sn precipitation in a 5Sn-95Pb solder alloy,” Metallurgical Transactions A, vol. 20, no. 8, pp. 1325-1333, 1989.
[76] T.-K. Lee, T. Bieler, C.-U. Kim et al., "Interconnection: The Joint," Fundamentals of Lead-Free Solder Interconnect Technology, pp. 21-50: Springer US, 2015.
[77] Periodictable.com,http://periodictable.com/Properties/A/Density.al.wt. html .
[78] J. Jang, D. Frear, T. Lee et al., “Morphology of interfacial reaction between lead-free solders and electroless Ni–P under bump metallization,” Journal of applied physics, vol. 88, no. 11, pp. 6359-6363, 2000.
校內:2020-08-24公開