| 研究生: |
許書瑋 Hsu, Shu-Wei |
|---|---|
| 論文名稱: |
呼吸式質子交換膜燃料電池之水管理探討研究 The Study of Water Management on Air-Breathing PEMFC |
| 指導教授: |
賴維祥
Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 呼吸式質子交換膜燃料電池 、交流阻抗分析 、風洞 、水平衡 |
| 外文關鍵詞: | Air-breathing PEMFC, Electrical impedance analysis, Wind tunnel, Water balance |
| 相關次數: | 點閱:138 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於呼吸式質子交換膜燃料電池的系統架構較為簡單,因此在千瓦級的發電系統領域中有極大的發展潛力。呼吸式質子交換膜燃料電池陰極燃料為大氣中的空氣,因此外界的氣流環境對於呼吸式質子交換膜燃料電池組有絕對性的影響。本論文嘗試設計五級平板陣列型呼吸式燃料電池組,放置於循環式風洞中,以改變其外在氣流環境及電池操作溫度進行實驗,並使用極化曲線及交流阻抗分析技術進行分析。
在本研究中發現,多數情況下呼吸式質子交換膜燃料電池於強制對流下的性能優於自然對流下的性能。當改變電池陰極面攻角及電池操作溫度時,會改變陰極表面的水分蒸散速率,進而改變膜電極組的水平衡狀態。從交流阻抗分析而言,在不同風速下,呼吸式質子交換膜燃料電池於陰極面攻角為90°時的阻抗頻譜整體變化小於陰極面攻角為0°時的變化。本研究之五級平板陣列型呼吸式燃料電池組於2.0V時,最大功率密度可達1286mW/cm2。
Because of the simple system construction, air-breathing PEMFCs have a great potential in the field of kilowatt power generation. Air-breathing PEMFCs use air in atmosphere as the cathodic fuel, so the characteristic of external environment has an absolute influence on air-breathing PEMFCs.
In this study, a 5-cell array planar air-breathing PEMFC stack was made and placed into a closed-circuit wind tunnel. By changing cathode-side angle of attack, stack operation temperature and ambient flow speed, it will be discussed that the influences of ambient flow field of cathode and stack operation temperature to the performance of air-breathing PEMFC stack respectively by fuel cell polarization and electrical impedance spectroscopy.
Experimental results showed that in the most case the stack performance in the forced convection on was better than the stack performance in the free convection. When changing angle of attack on the cathode-side and the stack operation temperature, it could change the water evaporation rate on the cathodic GDL, and thereby changing the water balance of the MEAs. The difference of the impedance spectrum at 90°angle of attack on cathode-side was smaller than the difference of the impedance spectrum at 0°angle of attack under different wind velocity by electrical impedance analysis. The 5-cell array planar air-breathing PEMFC stack could reach the maximum power density, 1286mW/cm2 at 2V in the research.
參考文獻
1.黃如慧, 高分子電解質燃料電池.
2.陳常鵬, 科技專題:燃料電池的應用與優缺點, in 大紀元. 2006.
3.黃鎮江, 燃料電池, 全華科技圖書股份有限公司.
4.EG&G Technical Services, I., Fuel Cell Handbook (Seventh Edition). 2004.
5.許皓鈞, “材料與能源---燃料電池之發展延革 ”, 2007.
6.王智薇, “淺談新興能源科技產業—氫能與燃料電池,” 2008.
7.Kim, S. H., Cha, H. Y., Miesse, C. M., Jang, J. H., Oh, Y. S., Cha, S. W., “Air-Breathing Miniature Planar Stack Using the Flexible Printed Circuit Board as a Current Collector,” International Journal of Hydrogen Energy, 34(1): p. 459-466, 2009.
8.Santa Rosa, D. T., Pinto, D. G., Silva, V. S., Silva, R. A., Rangel, C. M., “High Performance Pemfc Stack with Open-Cathode at Ambient Pressure and Temperature Conditions,” International Journal of Hydrogen Energy, 32(17): p. 4350-4357, 2007.
9.Tabe, Y., Park, S. K., Kikuta, K., Chikahisa, T., Hishinuma, Y., “Effect of Cathode Separator Structure on Performance Characteristics of Free-Breathing Pemfcs,” Journal of Power Sources, 162(1): p. 58-65, 2006.
10.Fabian, T., Posner, J. D., O'Hayre, R., Cha, S. W., Eaton, J. K., Prinz, F. B., Santiago, J. G., “The Role of Ambient Conditions on the Performance of a Planar, Air-Breathing Hydrogen Pem Fuel Cell,” Journal of Power Sources, 161(1): p. 168-182, 2006.
11.Fabian, T., O'Hayre, R., Prinz, F. B., Santiago, J. G., “Measurement of Temperature and Reaction Species in the Cathode Diffusion Layer of a Free-Convection Fuel Cell,” Journal of the Electrochemical Society, 154(9): p. B910-B918, 2007.
12.Ous, T., Arcoumanis, C., “The Formation of Water Droplets in an Air-Breathing Pemfc,” International Journal of Hydrogen Energy, 34(8): p. 3476-3487, 2009.
13.Schmitz, A., Tranitz, M., Eccarius, S., Weil, A., Hebling, C., “Influence of Cathode Opening Size and Wetting Properties of Diffusion Layers on the Performance of Air-Breathing Pemfcs,” Journal of Power Sources, 154(2): p. 437-447, 2006.
14.Paquin, M., Frechette, L. G., “Understanding Cathode Flooding and Dry-out for Water Management in Air Breathing Pem Fuel Cells,” Journal of Power Sources, 180(1): p. 440-451, 2008.
15.Zhang, Y., Pitchumani, R., “Numerical Studies on an Air-Breathing Proton Exchange Membrane (Pem) Fuel Cell,” International Journal of Heat and Mass Transfer, 50(23-24): p. 4698-4712, 2007.
16.楊鎮丞, “呼吸式質子交換膜燃料電池嵌入平板表面之設計及其性能研究,” 國立成功大學航太系碩士論文, 2007.
17.Chen, C. Y., Lai, W. H., Weng, B. J., Chuang, H. J., Hsieh, C. Y., Kung, C. C., “Planar Array Stack Design Aided by Rapid Prototyping in Development of Air-Breathing Pemfc,” Journal of Power Sources, 179(1): p. 147-154, 2008.
18.Li, H., Tang, Y. H., Wang, Z. W., Shi, Z., Wu, S. H., Song, D. T., Zhang, J. L., Fatih, K., Zhang, J. J., Wang, H. J., Liu, Z. S., Abouatallah, R., Mazza, A., “A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell,” Journal of Power Sources, 178(1): p. 103-117, 2008.
19.Yuan, X. Z., Wang, H. J., Sun, J. C., Zhang, J. J., “Ac Impedance Technique in Pem Fuel Cell Diagnosis - a Review,” International Journal of Hydrogen Energy, 32(17): p. 4365-4380, 2007.
20.Evgenij Barsoukov, J. R. M., “Impedence Spectroscopy Theory, Experiment and Applications (Second Edition),” John Wiley & Sons,Inc., 2005.
21.陳政緯, “半電池反應之交流阻抗研究 - 鑭鈣鈷鐵氧化物陰極,” 國立台灣科技大學化學工程系碩士論文, 2007.
22.林昱志, “質子交換膜型燃料電池阻抗之分析,” 國立成功大學化學工程研究所碩士論文, 2001.
23.鄭怡潔, “高週波電漿濺鍍程序製備質子交換膜燃料電池電極,” 國立成功大學環境工程學系碩士論文, 2005.
24.Allen J. Bard, L. R. F., “Electrochemical Method Fundamentals and Applications,” John Wiley & Sons,Inc., 2001.
25.Freire, T. J. P., Gonzalez, E. R., “Effect of Membrane Characteristics and Humidification Conditions on the Impedance Response of Polymer Electrolyte Fuel Cells,” Journal of Electroanalytical Chemistry, 503(1-2): p. 57-68, 2001.
26.Xiao-Zi Yuan, C. S., Haijiang Wang, Jiujun Zhang, “Electrochemical Impedance Spectroscopy in Pem Fuel Cells,” Springer, 2009.