| 研究生: |
柯維軒 Ko, Wei-Shuan |
|---|---|
| 論文名稱: |
一維晶體的分級式堆疊 Hierarchical assembly of one-dimensional crystals |
| 指導教授: |
馬利歐
Mario Hofmann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 奈米製造 、乾式疊加 、光柵 、石墨烯 |
| 外文關鍵詞: | nanofabrication, dry-assembly, grating, graphene |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
很多研究證明了當材料縮小到奈米等級時,這些材料會出現一些奇特的特性像是高載子傳遞和光學性質,這些奇特的特性將顛覆我們對這世界的認知。然而奈米等級的世界實在是太迷你而不是我們可以掌握的,所以如何把材料在奈米等級時的性質放大到我們所存在的巨觀世界將是一個大挑戰。有很多方法可以製造出奈米結構像是電子束微影和掃描探針微影,但是這些方法並不夠有效率,像是需要一些複雜的步驟像是塗布感光材料、蝕刻、顯影等,一些新的儀器需要備採用,像是掃描式電子顯微鏡(SEM)、掃描式穿隧電子顯微鏡等(STM),也有很多方法堆疊奈米粒子,但是無法維持材料在奈米等級時的性質。這篇論文我們發表了一個既有效率,又經濟的方法叫做”fold, release and repeat”,重點是相當簡單。我們只重複了七次實驗就把一個我們製造的微米等級單位晶胞疊加到128層。單位晶胞的概念是我們可以利用各種奈米材料設計一個我們想要的功能性單元,再將此晶胞疊加到數萬倍甚至數十萬倍。因為我們做出來的材料為層狀結構,只要經過適當的設計將可以應用在製作光柵,過去人們製作光柵的方式也跟製作奈米結構時一樣較麻煩且沒有效率,我們可以用我們的方法設計我們自己的光柵。根據光柵實驗,我們做出來的樣品真的表現出光柵的特性呈現週期性的訊號。根據光柵的理論也可以計算出各單位晶胞的間距相互應證。”Fold, release and repeat” 將顛覆傳統製造奈米結構和光柵的方法,而未來我們將會將此方法應用在疊加石墨烯。
Many researches prove that when the particle reduces to nanoscale, there are exotic properties such as high carrier mobility or optical properties, and these special properties are going to subversion our knowledge of this world. However, the nanoscale world is too small to handle, so it is a big challenge that how to make the properties of nano amplified to our macroscopic world. There are many ways for nanofabrication such as e-beam lithography and scanning probe lithography, but these ways not efficient enough because the complicate procedure such as patterning, etching and developing. Some novel equipments should be adapted such as scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). There are also methods to make assembly of nanoparticles, but the nanoscale properties are not able to maintain. In this thesis, we present an efficient and economic approach called “fold, release and repeat”, and it is very easy to handle. We only repeated 7 times of our method, and we got 128 layers of designed unit cell. The concept of unit cell is that we can use different nanomaterials to design a functional unit cell, and assemble them into thousands and millions times. Because the sample we made is periodic and layer by layer structure, we can apply our method to grating fabrication during some design. Just like the nanofabrication, those ways to fabricate gratings are also not efficient and more complicate. Our approach can easily make a grating. According to grating equation, our samples really show the property of gating and have periodic signal. We also can calculate the spacing between the neighbor unit cells by grating theory, and prove our sample really a grating again. “Fold, release and repeat” is going to subversion the traditional approaches for nano and grating fabrication. We will apply graphene to be one of the unit cell in the future.
1. Lieber, C.M., Nanoscale science and technology: Building a big future from small things. Mrs Bulletin, 2003. 28(7): p. 486-491.
2. Li, Y.G., et al., MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2011. 133(19): p. 7296-7299.
3. Gubin, S.P., et al., Magnetic nanoparticles: Preparation methods, structure and properties. Uspekhi Khimii, 2005. 74(6): p. 539-574.
4. Kelly, K.L., et al., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B, 2003. 107(3): p. 668-677.
5. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
6. Mendes, P.M., et al., Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography. Langmuir, 2004. 20(9): p. 3766-3768.
7. Altissimo, M., E-beam lithography for micro-/nanofabrication. Biomicrofluidics, 2010. 4(2).
8. See, http://www.azonano.com/article.aspx?ArticleID=3219.
9. Lo, T.N., et al., E-beam lithography and electrodeposition fabrication of thick nanostructured devices. Journal of Physics D-Applied Physics, 2007. 40(10): p. 3172-3176.
10. Liu, G.Y., Nanofabrication of self-assembled monolayers using scanning probe lithography. Abstracts of Papers of the American Chemical Society, 2000. 220: p. U431-U431.
11. Tseng, A.A., A. Notargiacomo, and T.P. Chen, Nanofabrication by scanning probe microscope lithography: A review. Journal of Vacuum Science & Technology B, 2005. 23(3): p. 877-894.
12. Gharbia, Y.A. and J. Katupitiya, Experimental determination of optimum parameters for nano-grinding of optical fibre end faces. International Journal of Machine Tools & Manufacture, 2004. 44(7-8): p. 725-731.
13. Li, X.S., et al., Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society, 2011. 133(9): p. 2816-2819.
14. Al-Temimy, A., C. Riedl, and U. Starke, Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation. Applied Physics Letters, 2009. 95(23).
15. Yin, S.Y., Z.Q. Niu, and X.D. Chen, Assembly of Graphene Sheets into 3D Macroscopic Structures. Small, 2012. 8(16): p. 2458-2463.
16. Zhou, X.L., et al., Supercapacitors based on high-surface-area graphene. Science China-Technological Sciences, 2014. 57(2): p. 278-283.
17. See, http://www.chem.fsu.edu/chemlab/chm1046course/solids.html.
18. See, http://www.manchester.ac.uk/discover/news/article/?id=10435.
19. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425.
20. Gumbs, G. and D.H. Huang, Electronic and photonic properties of graphene layers and carbon nanoribbons PREFACE. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2010. 368(1932): p. 5353-5354.
21. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature Materials, 2007. 6(3): p. 183-191.
22. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5(8): p. 574-578.
23. Li, X.S., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
24. Zeitner, U.D., et al., High performance diffraction gratings made by e-beam lithography. Applied Physics a-Materials Science & Processing, 2012. 109(4): p. 789-796.
25. Okano, M., et al., Optimization of diffraction grating profiles in fabrication by electron-beam lithography. Applied Optics, 2004. 43(27): p. 5137-5142.
26. See, http://www.microchem.com/pdf/PMMA_Data_Sheet.pdf.
27. Brinker, C.J., Evaporation-induced self-assembly: Functional nanostructures made easy. Mrs Bulletin, 2004. 29(9): p. 631-640.
28. Leskela, M. and M. Ritala, Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films, 2002. 409(1): p. 138-146.
29. Hideo Kaiju, K.K.a.A.I., Lithography-Free Nanostructure Fabrication Techniques Utilizing Thin-Film Edges, Recent Advances in Nanofabrication Techniques and Applications. InTech, ed. B.C. (Ed.). 2011.
30. Lotters, J.C., et al., The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. Journal of Micromechanics and Microengineering, 1997. 7(3): p. 145-147.
31. Dargahi, J., M. Parameswaran, and S. Payandeh, A micromachined piezoelectric tactile sensor for an endoscopic grasper - Theory, fabrication and experiments. Journal of Microelectromechanical Systems, 2000. 9(3): p. 329-335.
32. Bonaccorso, F., et al., Production and processing of graphene and 2d crystals. Materials Today, 2012. 15(12): p. 564-589.
校內:2016-09-09公開