| 研究生: |
陳冠豪 Chen, Kuan-Hao |
|---|---|
| 論文名稱: |
以溶膠凝膠法製備MnOx/Al2O3觸媒焚化處理三氯乙烯之研究 The Catalytic Incineration of Trichloroethylene Over MnOx/Al2O3 Catalysts Prepared by Sol-Gel Method |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 204 |
| 中文關鍵詞: | 產物監測 、反應動力模式 、程溫還原 、臨溼含浸法 、溶膠凝膠法 、三氯乙烯 、觸媒焚化 |
| 外文關鍵詞: | Incipient wetness impregnation, Sol-gel, Trichloroethylene, Kinetic model, TPR, Monitor product, Catalytic incineration |
| 相關次數: | 點閱:102 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石化工業製程所排放廢氣中常含有揮發性有機物VOCs(Volatile Organic Compounds),由於具有高度的光化學反應力,在陽光下經由紫外線照射,容易被氧化形成游離基(radicals),會再與大氣中的其他成份如NO2、O3反應,形成高濃度的臭氣、空氣污染煙霧(smog)和致癌物質,如醛、酮及PANs等,因此處理VOCs實為當務之急。三氯乙烯(Trichloroethyl- ene)為工業界常用的含氯有機溶劑,其在環境中之轉化過程(fate)甚慢,易造成人體與生態上的危害。含氯的有機溶劑大部份已證實具有致癌性。
本研究利用溶膠凝膠法及臨溼含浸法製備不同的MnOx/Al2O3觸媒,進行焚化工業界常用之揮發性有機污染物三氯乙烯,發現以臨溼含浸法製備之觸媒(MnOx(IM))比溶膠凝膠法製備之觸媒(MnOx(SG))較具有活性。在觸媒輔助實驗方面,發現在873 K條件下鍛燒8小時後的觸媒於XRD上無任何與氧化錳相關之peak。但經由EDS、Mapping、及ESCA可以分析到氧化錳的存在。由SEM上觀察到觸媒之顆粒大小屬於奈米級。由ESCA分析及TPR實驗得知氧化錳觸媒主要以Mn2O3及Mn3O4型式存在。在長期三氯乙烯毒化測試發現MnOx(IM)觸媒較MnOx(SG)觸媒具有抗毒化現象。
為了尋求MnOx(IM)觸媒焚化處理三氯乙烯之最佳的動力模式,探討三種最常用的反應動力模式:power-rate law、Mas and van Krevelen model及Langmuir-Hinshelwood model。經由實驗數據的分析,以Langmuir- Hinshelwood model所求得之活化能較適當,其求得反應之活化能為Ea= 18.36 kcal/mole。
在反應溫度773 K生成物的監測部分,當有氧氣存在時,發現MnOx(IM)觸媒及MnOx(SG)觸媒焚化三氯乙烯皆會產生CO、CO2、HCl及Cl2,而MnOx(SG)觸媒會另外產生光氣(phosgene)。在無氧氣的情況下,MnOx(IM)觸媒焚化三氯乙烯僅產生CO及HCl。藉由此結果推導三氯乙烯在MnOx(IM)觸媒表面上的可能反應機制。
Volatile organic compounds (VOCs) are the typical pollutants emitted from the petrochemical industrial processing. VOCs can easily release radicals to react with some chemical compounds, such as NOx and Ozone in the atmosphere, to form the photochemical smog; therefore, dealing with VOCs is a task of greatest urgency at present. Otherwise, Trichloroethylene as chlorinated VOCs is now in widespread use of the industrial processing but is also hazardous to our environment and health. For example, it has been confirmed that most chlorinated VOCs are carcinogen.
In this study, we decompose trichloroethylene over diverse MnOx/Al2O3 catalysts prepared by incipient wetness impregnation and sol-gel methods. Comparing with the catalyst MnOx(SG) prepared by sol-gel methods, we can find the catalyst MnOx (IM)prepared by impregnate method showed higher catalytic activity for TCE decomposition. The characterization studies of MnOx/Al2O3 calcined at 873 K for 8 hour no peak related with manganese oxide in XRD, but the manganese oxide presented in EDS, Mapping and ESCA. The catalytic particle size belongs to nano scale in SEM. The manganese oxide in the catalyst were major present with Mn2O3 and Mn3O4 in ESCA analyzed and TPR tested. The MnOx(IM) catalyst has better performance in the long test of chlorine poisoning effect of TCE.
Power-rate law, Mars and van Krevelen model and Langmuir- Hinshelwood model are three kinetic models that use mostly when studying the incineration kinetics of TCE over the MnOx(IM) catalyst. However, experimental results indicated that the oxidation kinetic behavior of TCE over the catalyst can be expressed suitably by using the rate expression of the Langmuir-Hinshelwood model, obtained the activity energy Ea= 18.36 kcal/mol.
To monitor the products from the incineration of TCE over the MnOx(IM) and MnOx(SG) catalysts with oxygen present at 773 K can produce CO, CO2, HCl, and Cl2 and a phosgene was monitored with the MnOx(SG) catalyst decompose TCE in addition. Besides, the products without oxygen present at 773 K, CO and HCl were monitored with MnOx(IM) catalyst decompose TCE. Finally, we can obtain by means of the results to drive oxidation mechanism of TCE on the catalyst surface of MnOx(IM) obtained by mean of the results.
Arai, H.; Yamada, T.; Eguchi, K.; Seiyama, T. Catalytic combustion of methane over various perocskite-type oxide. Applied Catalysis B: Environment. 1994, 3,275-282.
Aronson, B J.; Blanford, C. F.; Stein, A. Synthesis, characterization, and ion-exchange properties of zinc and magnesium manganese oxides confined within MCM-41 channels. The Journal of Physical Chemistry B. 2000, 104, 449-459.
Balakrishnan, K.; Gonzales, R. D. Preparation of Pt/Alumina catalysts by the sol-gel method. Journal of Catalysis. 1993, 144, 395-413.
Baldi, M.; Finoccfio, E.; Milella, F.; Busca, G. Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Applied Catalysis B: Environment. 1998, 16, 43-51.
Benesi, H. A.; Bonner, R. V.; Lee, C. F. Determination of pore colume of solid catalyst. Analytical Chemistry. 1955, 27, 1963-2965.
Boaro, M.; Vicario, M.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based, model three-way catalysts. Catalysis Today. 2003, 77, 407-417.
Burgos, N.; Paulis, M.; Antxustegi, M. M.; Montes M. Deep oxidation of VOC mixtures with platinum supported on Al2O3/Al monoliths. Applied Catalysis B: Environmental. 2002, 38, 251-258.
Chang, C.; Weng, H. Deep oxidation of toluene on perovskite catalysts. Industrial & Engineering Chemistry Research. 1993, 32, 2930-2933.
Cho, I. H.; Park, S. B.; Cho, S. J.; Ryoo, R. Investigation of Pt/γ-Al2O3 catalysts prepared by sol-gel method. Journal of Catalysis. 1998, 173, 295-303.
Cooper, C. D.; Air pollution control: A design approach. Waveland Press, Prospect Heights, 1996.
Craciun, R.; Nentwick, B.; Hadjiivanov, K.; Knozinger, H. Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation. Applied Catalysis A: General. 2003, 243, 67-79.
Cranston, R. W.; Inkley, F. A. Advances in Catalysis. 1957, 9, 143.
de Boer, J. H.; Lippens, B. C.; Linsen, B. G.; Broek-hoff, J. C. P.; van den Heuval, A.; Osinga, Th. J. Journal of Colloid and Interface Science. 1966, 21, 405.
Dilsiz, N.; Akovali, G. Study of sol-gel processing for fabrication of low density alumina microspheres. Materials Science and Engineering. 2002, 332, 91-96.
Fan, J.; Yates, Jr. J. T. Mechanism of photooxidation of trichloroethylene on TiO2: detection of intermediates spectroscopy. Journal of the American Chemical Society. 1996, 118, 4686-4692.
Feijen-Jeurissen, M. M. R.; Jorna, J. J.; Nieuwenhuys, B. E.; Sinquin, G.; Petit, Corinne.; Hindermann, J. Mechanism of catalytic destruction of 1,2-dichloroethane and trichloroethylene over γ-Al2O3 and γ-Al2O3 supported chromium and palladium catalysts. Catalysis Today. 1999, 54, 65-79.
Finocchio, E.; Pistarino, C.; Dellepiane, S.; Serra, B.; Braggio, S.; Baldi, M.; Busca, G. Studies on the catalytic dechlorination and abatement of chloride VOC: the case of 2-chloropropane, 1,2-dichloropropane and trichloroethylene. Catalysis Today. 2002, 75, 263-267.
Gallardo-Amores, J. M.; Armaroli, T.; Ramis, G.; Finocchio, E.; Busca, G. A study of anatase-supported Mn oxide as catalysts for 2-propanol oxidation. Applied Catalysis B: Environment. 1999, 22, 249-259.
Gangwal, S. K.; Mullins, M. E.; Spivey, J. J. Caffrey, P. R. Kinetics and selectivity of deep catalytic oxidation of n-hexane and benzene. Applied atalysis. 1988, 36, 231-247.
Gregg, S. J.; Sing, S. W. Adsorption, surface area, and porosity. Academic, New York, 1967.
Heyes, C. J.; Irwin, J. G.; Johnson, H. A.; Moss, R. L. The catalytic oxidation of organic air pollutants. Part I: Single metal oxide catalysts. Journal of Chemical Technology & Biotechnology. 1982, 32, 1025-1033.
Ikeda, M.; Tago, T.; Kishida, M.; Wakabayashi, K. Thermal stability of Pt particles of Pt/Al2O3 catalyst prepared using microemulsion and catalytic activity in NO-CO reaction. Catalysis Communications. 2001, 2, 261-267.
Inkley, F. A.; Everett, in D. H.; Stone, F. S. Structure and properties of porous materials. Academic, New York, 1958, 124.
Jones, A.; McNicol, B. Temperature-programmed reduction for solid material characterization. Marcel Dekker, New York, 1986.
Kapteijn, F.; van Langeveld, A. D.; Moulijn, J. A.; Andreini, A.; Vuurman, M. A.; Turek, A. M.; Jehng, J.; Wachs, I. E. Alumina-supported manganese oxide catalyst I. Characterization: Effect of precursor and loading. Journal of Catalysis. 1994, 150, 94-104.
Kureti, S.; Weisweiler, W. A new route for the synthesis of high surface area γ-aluminium oxide xerogel. Applied Catalysis A: General. 2002, 225, 251-259.
Liu, Y.; Luo, M.; Wei, Z.; Xin, Q.; Ying, P.; Li, C.; Catalytic oxidation of chlorobenzene on supported manganese oxide catalysts. Applied Catalysis B: Environment. 2001, 29, 61-67.
Lopez, T.; Ramos, E.; Bosch, P.; Asomoza, M.; Gomez, R. DTA and TGA characterization of sol-gel hydrotalcites. Materials Letters. 1997, 30, 289-282.
Padilla, A. M.; Corella, J.; Toledo, J. M. Total oxidation of some chlorinated hydrocarbons with commercial chromia based catalysts. Applied Catalysis B: Environmental. 1999, 22, 107-121.
Parfitt, G. D.; Sing, K. S. W. Characterization of powder surfaces. Academic, New York, 1976.
Park, T. S.; Jeng, S. K.; Hong, S. H.; Hong, S. C. Selective catalytic reduction of nitrogen oxides with NH3 over natural manganese ore at low temperature. Industrial & Engineering Chemistry Research. 2001, 40, 4491-4495.
Pecchi, G.; Reyes, P.; Concha, I.; Fierro, J. L. G. Methane combustion on Pd/SiO2 sol gel catalysts. Journal of Catalysis. 1998, 179, 309-314.
Reyes, P.; Figueroa, A.; Pecchi, G.; Fierro, J. L. G. Catalytic combustion of methane on Pd-Cu/SiO2 catalysts. Catalysis Today. 2000, 62, 209-217. Robert, J. F.; Ronald, M. H.; Barry, K. S. Environment Catalysts. Chemical & Engineering News. 1992, 7, 34-44.
Roberts, B. F. Journal of Colloid and Interface Science. 1967, 23, 266.
Sinquin, G.; Petit, C.; Libs, S.; Hindermann, J. P.; Kiennemann, A. Catalytic destruction of chlorinated C2 compounds on a LaMnO3+δ perovskite catalyst. Applied Catalysis B: Environmental. 2001, 32, 37-47.
Spivey, J. J. Complete catalytic oxidation of volatile organic. Industrial & Engineering Chemistry Research. 1987, 26(11), 2165-2180.
Stobbe, E. R.; de Boer, B. A.; Geus, J. W. The reduction and oxidation behaviour of manganese oxides. Catalysis Today. 1999, 47, 161-167.
Wang, J. A.; Bokhimi, X.; Morales, A.; Novaro, O.; Lopez, T.; Gomez, T.; Gomez, R. Aluminum local environment and defects in the crystalline structure of sol-gel alumina catalyst. The Journal of Physical Chemistry B. 1999, 103,
299-303.
Wang, J. A.; Morales, A.; Bokhimi, X.; Novaro, O. Cationic and anionic vacancies in the crystalline phases of sol-gel magnesia-alumina catalysts. Chemistry of Materials. 1999, 11, 308-313.
Xiao, T.; Ji, S.; Wang, H.; Coleman, K. S.; Green, M. L. H. Methane combustion over supported cobalt catalysts. Journal of Molecular Catalysis A: Chemical. 2001, 175, p.111-123.
丁嘉源,「波洛斯凱特型觸媒用於甲烷還原一氧化氮之研究」,國立成功大學化學工程學系碩士論文,六月,1996。
化工資訊,「化學品原料商情」,四月,2002,92-96。
化工資訊,「化學品原料商情」,四月,2003,92-96。
王大中、顧洋、李嘉平,「一甲胺氣體氧化反應之研究」,國立成功大學化學工程學系碩士論文,六月,1990。
王清輝,「銅-鉬氧化物擔體觸媒應用於氧化分解二硫化二甲基之研究」,國立成功大學化工學系碩士論文,六月,1998。
王榮德,「有機溶劑所引起的疾病」,有機廢氣觸媒焚化處理技術研討會,三月,1989。
江惠中,「有機廢氣觸媒焚化及廢熱回收」,有機廢氣觸媒焚化處理技術研討會,三月,1989,4-1~4-25。
何俊德,「以Mn3O4/γ-Al2O3觸媒焚化處理二氯乙烷之研究」,國立成功大學環境工程學系碩士論文,八月,2001。
吳榮宗著,「工業觸媒概論」,國興出版社,1989。
呂立德,「化工動力與化工熱力」,立功出版社,六月,1991。
李秉傑、邱宏明、王奕凱合譯,「非均勻系催化原理與應用」,渤海堂文化公司印行,二月,1988。
胡維民,「奈米級La1-xA´xMnO3 (A´= Sr, Ce)用於一氧化氮還原之性能」,國立成功大學化學工程學系碩士論文,六月,2002。
許漢軒,「以Mn2O3/γ-Al2O3觸媒焚化處理三氯乙烯之研究」,國立成功大學環境工程學系碩士論文,六月,2000。
陳陵援、吳慧眼著,「儀器分析」,三民書局,八月,2000。
陳慧英,黃定加,朱秦億,「溶膠凝膠法在薄膜製備上之應用」,化工技術,第七卷,第十一期,1999,152-167。
黃柳青譯,「化工動力學與反應設計下冊」,科技出版社,1993,120-123。
黃振家,「揮發性有機廢氣處理技術:活性碳吸附」,化工,第44卷,第三期,1997,49-59。
劉國棟,「VOC管制趨勢展望」,工業污染防制,第48期,1992,15-31。
蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第三期,1993,171-182。
蔡文田、張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第四期,1992,41-58。
蔡金津,「奈米顆粒及薄膜之溶膠-凝膠技術」,化工資訊,十一月,2001,16-21。
盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,1989,102-117。
環保署,窗外有藍天空氣品質改善紀實,http://soloman.epa.gov.tw/f/DM/bluesky/D_blue_sky.htm
環境保護署,環境衛生及毒物管理資料,http://www.epa.gov.tw/J/toxic/