簡易檢索 / 詳目顯示

研究生: 張庭瑋
Chang, Ting-wei
論文名稱: 固態粉體擴散滲鋅法於低碳鋼SAE1010之鍍層結構與腐蝕性質研究
Study of Structure and Corrosion ofSolid-Diffusion Zn Coating on Low Carbon Steel SAE1010
指導教授: 李世欽
Li, Shih-chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 耐腐蝕回收再利用粉體擴散鍍鋅
外文關鍵詞: Zn coating, solid-diffusion, reused, anti-corrosion
相關次數: 點閱:116下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業泛用之鋼板的防蝕技術常利用金屬包覆方法,由於鋅鍍層相較於其他金屬對Cl-有良好的抵抗效果並較經濟,所以多運用在海洋氣氛中的鋼鐵材料上。常用的鍍鋅方法有熱浸鍍鋅法、電鍍法和利用真空爐或流體床的CVD/PVD法,但考量到成本、環境、工件尺寸與連續化製程上的缺點,若使用固態粉體擴散法來製成鋅鍍層,則可透過溫度控制等製程參數,得到相當一致的膜厚。本研究利用固態粉體擴散法得到在鍍鋅製程中的最佳參數為加熱溫度400℃下持溫2小時,且添加2% NH4Cl對於鍍層的完整性有明顯的提高,並且發現在一定次數的製程循環內,所使用的鋅粉有回收再利用性。經由擴散所形成的鍍層結構與熱浸鍍鋅的鍍層有相同的成長機制,鍍層厚度會與製程時間的平方根呈線性關係,添加鋁粉雖然會使鍍層厚度減少,卻能在鹼性環境中提供良好的耐腐蝕能力。電化學測試結果也顯示,鋅鍍層在鹼性環境中可以提供最佳的犧牲保護效果,除此之外,由固態粉體擴散滲鋅法製成的鍍層在鹼性環境中擁有最高的腐蝕電位,能降低腐蝕的發生機率並提供更好的耐蝕性。

    Zn coating is better and cheaper than other metal coatings in resisting the Cl- ion corrosion, so it is widely used for protecting the steel tools which are working under seawater environment. Lately the coating methods like hot-dip galvanizing, electroplating and CVD/PVD by using vacuum furnace or fluidized bed are extensively applied in fabricating of Zn coating. But, it still exists some problems with cost, environment pollution, and workpiece measurement in continuous process by using these coating methods. Solid-diffusion coating method can form a continuous Fe-Zn outer layer in uniform thickness by controlling the process conditions. In this study, Zn coating is formed using solid-diffusion coating method by heating the substrate to 400℃ for 2 hours. The multi-layer films not only enhance the corrosion resistance and surface hardness, but also improve the recyclability and reusability of Zn powder by some specific repeated cycles. Although the addition of Al powder in Zn coating reduces the coating thickness, it improves the anti-corrosion property under alkaline environment. After electrochemical analysis, the Zn coatings made by solid-diffusion method reveal the best corrosion resistance and the highest corrosion potential under alkaline environment. So we can expect the Zn coating with lower corrosion probability to provide better sacrificed protection.

    中文摘要 I Abstract II 總目錄 V 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1 - 1 前言 1 1 - 2 研究動機與目的 2 第二章 原理與文獻回顧 5 2 - 1 基材鍍鋅鋼板 5 2 - 2 鋅鍍層結構 6 2 - 3 鍍鋅工法介紹 7 2 - 3 - 1 熱浸鍍鋅(Hot-Dip galvanizing) 7 2 - 3 - 2 電鍍 11 2 - 4 鋅鍍層之添加元素 13 2 - 5 腐蝕種類 14 2 - 6 電化學與腐蝕特性 16 2 - 7 電化學測試法 19 2 - 7 - 1 開路電位 19 2 - 7 - 2 Tafel極化 20 第三章 實驗方法與步驟 30 3 - 1 實驗流程圖 30 3 - 2 實驗材料 31 3 - 2 - 1 基材試片 31 3 - 2 - 2 金屬粉末 31 3 - 2 - 3 實驗氣體 31 3 - 3 實驗設備 31 3 - 4 固態粉體擴散法 32 3 - 5 鍍層製備 33 3 - 6 X光繞射分析儀(X-ray Diffraction) 34 3 - 7 維氏硬度分析(Vicker's hardness testing) 34 3 - 8 表面電子顯微鏡觀察(Surface Electron Microscopy)34 3 - 9 電子微探儀(Electron Probe X-ray Microanalyzer) 35 3 - 10 浸泡腐蝕試驗 35 3 - 11 電化學試驗方法 35 3 - 11 - 1 開路電位(Open Circuit Potential) 36 3 - 11 - 2 塔佛極化曲線(Tafel Polarization Curves) 36 3 - 12 鹽霧試驗 37 第四章 結果與討論 41 4 - 1 溫度變化對鍍層製備之影響 41 4 - 2 鍍層粉末回收與再利用性 44 4 - 3 保護氣氛變化對鍍層之影響 45 4 - 4 持溫時間對鍍層之影響 46 4 - 5 添加不同重量百分比鋁粉對鍍層之影響 49 4 - 6 浸泡腐蝕試驗 51 4 - 6 - 1 酸性(pH=3)環境 51 4 - 6 - 2 中性(pH=7)環境 53 4 - 6 - 3 鹼性(pH=11)環境 54 4 - 6 - 4 鍍層殘留厚度討論 56 4 - 7 電化學實驗分析 58 4 - 7 - 1 開路電位分析 58 4 - 7 - 2 極化曲線分析 59 4 - 8 鹽霧實驗分析 61 第五章 結論 109 參考文獻 110

    [1] A. P. Yadav, H. Katayama, K. Noda, H. Masuda, A. Nishikata, T. Tsuru, "Effect of Fe-Zn alloy layer on the corrosion resistance of galvanized steel in chloride containing environments", Corrosion Science, 49 (2007) 3716-3731.
    [2] D. A. Jones, "Principles and prevention of corrosion (2nd Edition)", Prentice Hall, (1995).
    [3] 楊秉霖, "熱浸鍍鋅鋼板鋅花組織及鋅層龜裂之探討", 義守大學碩士論文, (1997).
    [4] 燁輝公司, "鍍製鋼品使用技術手冊", No.4 (1991) 1-3,8-11,31-35.
    [5] G. Vourlias, N. Pistofidis, D. Chaliampalias, E. Pavlidou, P. Patsalas, G. Stergioudis, D. Tsipas, E. K. Polychroniadis, "A comparative study of the structure and the corrosion behavior of zinc coatings deposited with various methods", Surface and Coatings Technology, 200 (2006) 6594-6600.
    [6] D. Chaliampalias, G. Vourlias, N. Pistofidis, E. Pavlidou, A. Stergiou, G. Stergioudis, E. K. Polychroniadis, D. Tsipas, "Deposition of zinc coatings with fluidized bed technique", Materials Letters, 61 (2007) 223-226.
    [7] A. K. Verma, S. Chandra, B. K. Dhindaw, R. D. K. Misra, "Numerical treatment of the galvannealing process", Materials Science and Engineering: A, 418 (2006) 335-340.
    [8] P. Bicao, W. Jianhua, S. Xuping, L. Zhi, Y. Fucheng, "Effects of zinc bath temperature on the coatings of hot-dip galvanizing", Surface and Coatings Technology, 202 (2008) 1785-1788.
    [9] A. R. Marder, "The metallurgy of zinc-coated steel", Progress in Materials Science, 45 (2000) 191-271.
    [10] Syahbuddin, P. R. Munroe, B. Gleeson, "The development of Fe-Zn intermetallic compounds in solid Fe/Zn and Fe/Zn-Al diffusion couples during short-term annealing at 400C", Materials Science and Engineering A, 264 (1999) 201-209.
    [11] T. Kato, K. Nunome, K. Kaneko, H. Saka, "Formation of the [zeta] phase at an interface between an Fe substrate and a molten 0.2 mass% Al-Zn during galvannealing", Acta Materialia, 48 (2000) 2257-2262.
    [12] J. Pelerin, J. Hoffmann, V. Leroy, "THE INFLUENCE OF SILICON AND PHOSPHORUS ON THE COMMERCIAL GALVANIZATION OF MILD STEELS", Metall, 35 (1981) 870-873.
    [13] 林光隆, "材料表面工程相關技術", 材料表面工程相關技術, (2001)12-25,33-37,61-82.
    [14] R. Venkataraman, "Effect of coating, properties on the formability of coating sheet steels", Colorado school of Mines, No. T-3809 (1989) 1-7.
    [15] V. Rangarajan, N. M. Giallourakis, D. K. Matlock, G. Krauss, J. Mater, "Shaping Technol 6, (1989) 217.
    [16] T. J. Langill, "Painting over hot-dip galvanized steel (Reprinted)", Materials Performance, 38 (1999) 44-49.
    [17] G. Reumont, J. B. Vogt, A. Iost, J. Foct, "The effects of an Fe Zn intermetallic-containing coating on the stress corrosion cracking behavior of a hot-dip galvanized steel", Surface and Coatings Technology, 139 (2001) 265-271.
    [18] W. D. Kirt, W. Ling, R. M. Clure, T. E. Weyand, "Zinc-based coating process, products and markets", J.M. Cigar, T.S Mackey and T.J. Ckeefe, Lead-Tin-Zinc80 (1979) 837-856.
    [19] D. Horstmann, F. K. Peters, "Proceedings of 9th International Hot Dip Galvanization Conference", Zinc Development Association, (1971) 75.
    [20] J. Wang, X. Su, F. Yin, Z. Li, M. Zhao, "The 480C and 405C isothermal sections of the phase diagram of Fe-Zn-Si ternary system", Journal of Alloys and Compounds, 399 (2005) 214-218.
    [21] 楊聰仁, "電鍍鋅與熱浸鍍鋅比較", 防蝕工程第二卷, 第四期 (1989) 52-61.
    [22] A. P. Singh, R. Balasubramaniam, R. G. Baligidad, "High temperature environmental interactions in carbon-alloyed iron aluminide of low Al content", Materials Science and Engineering A, 368 (2004) 48-55.
    [23] Y. He, D. Li, D. Wang, Z. Zhang, H. Qi, W. Gao, "Corrosion resistance of Zn-Al co-cementation coatings on carbon steels", Materials Letters, 56 (2002) 554-559.
    [24] D. Phelan, B. J. Xu, R. Dippenaar, "Formation of intermetallic phases on 55t.%Al-Zn-Si hot dip strip", Materials Science and Engineering: A, 420 (2006) 144-149.
    [25] B. Antonov, Y. Chernov, A. Pankratov, A. Shurygin, "The phase composition of a diffusion zinc coating alloyed with nickel on steel 20", Zashchita Metallov, 42 (2004) 57-60.
    [26] E. Pavlidou, N. Pistofidis, G. Vourlias, G. Stergioudis, "Modification of the growth-direction of the zinc coatings associated with element additions to the galvanizing bath", Materials Letters, 59 (2005) 1619-1622.
    [27] H. Asgari, M. R. Toroghinejad, M. A. Golozar, "On texture, corrosion resistance and morphology of hot-dip galvanized zinc coatings", Applied Surface Science, 253 (2007) 6769-6777.
    [28] X. Wang, J. Lu, C. Che, G. Kong, "The behavior of lead during the solidification of Zn-0.1Al-0.1Pb coating on batch hot-dipped steel", Applied Surface Science, 254 (2008) 2466-2471.
    [29] L. Jin-tang, W. Xin-hua, C. Chun-shan, K. Gang, C. Jin-hong, X. Qiao-yu, "Crystallographic research og spangle on hot dip galvanized steel sheets", Transactions of Nonferrous Metals Society of China, 17 (2007) 351-356.
    [30] 鮮祺振, "腐蝕理論與實驗", 徐氏基金會出版社, 台北 (1990).
    [31] 柯賢文, "腐蝕及其防治", 全華科技圖書, 台北 (2001).
    [32] A. S. f. T. a. Materials, "Standard definitions of terms relating to corrosion and corrosion testing", (1979).
    [33] K. Sotovdeh, et al, Corrosion, Vol.37, (1981), 358.
    [34] T. E. Wright, H. P. Godard, I. H. Jenks, Corrosion, Vol.13, (1957), 481.
    [35] P. M. Aziz, "Views on the mechanism of pitting", corrosion of aluminum, 9 (1953), 85-90.
    [36] 葉明勳, "防蝕工程", 中華大學機械系暨航空太空工程研究所上課講義, (2005).
    [37] 魏豐義, "熱浸鍍鋅防蝕原理與壽命", 防蝕工程第九卷, 1 (1995) 53-72.
    [38] K. Barton, "Intergalva 70, (1970) 199.
    [39] K. Barton, "Protection Against Atmospheric Corrosion", (1976).
    [40] M. Pourbaix, "Atlas of Electrochemical Equilibria in Aqueous Solution", NACE, (1974).
    [41] R. M. Evans, "An Assessment of the Atmospheric Corrosion Resistance of Hot-Dipped Galvanized Steel After Five Years Exposure", British Steel Corporation, (1974).
    [42] W. S. Tait, "An introduction to electrochemical corrosion testing for practicing engineers and scientists", Chapter 6 (1994).
    [43] 蘇葵陽, "實用電鍍理論與實際, 復文書局, 台南 (1999).
    [44] G. Vourlias, N. Pistofidis, K. Chrissafis, E. Pavlidou, G. Stergioudis, "MECHANISM AND KINETICS OF THE FORMATION OF ZINC PACK COATINGS", Journal of Thermal Analysis and Calorimetry, 91 (2008) 497-501.
    [45] G. Vourlias, N. Pistofidis, D. Chaliampalias, E. Pavlidou, G. Stergioudis, E. K. Polychroniadis, D. Tsipas, "Zinc deposition with pack cementation on low carbon steel substrates", Journal of Alloys and Compounds, 416 (2006) 125-130.
    [46] N. Pistofidis, G. Vourlias, D. Chaliampalias, K. Chrysafis, G. Stergioudis, E. K. Polychroniadis, "On the mechanism of formation of zinc pack coatings", Journal of Alloys and Compounds, 407 (2006) 221-225.
    [47] S. T. Vagge, V. S. Raja, R. G. Narayanan, "Effect of deformation on the electrochemical behavior of hot-dip galvanized steel sheets", Applied Surface Science, 253 (2007) 8415-8421.
    [48] M. H. Hong, H. Saka, "Plasticity and grain boundary structure of [delta]1k and [delta]1p intermetallic phases in the Fe---Zn system", Acta Materialia, 45 (1997) 4225-4230.
    [49] R. KAINUMA, K. ISHIDA, "Reactive Diffusion between Solid Fe and Liquid Zn at 723 K", ISIJ International, Vol. 47 (2007) 740–744.
    [50] C. E. Jordan, A. R. Marder, "Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450C (Part I 0.00wt% Al-Zn baths)", Journal of Materials Science, 32 (1997) 5593-5602.
    [51] M. Zhao, S. Wu, P. An, J. Luo, Y. Fukuda, H. Nakae, "Microstructure and corrosion resistance of a chromium-free multi-elements complex coating on AZ91D magnesium alloy", Materials Chemistry and Physics, 99 (2006) 54-60.
    [52] K. Tachibana, Y. Morinaga, M. Mayuzumi, "Hot dip fine Zn and Zn-Al alloy double coating for corrosion resistance at coastal area", Corrosion Science, 49 (2007) 149-157.
    [53] O. T. d. Rincon, J. Ludovic, E. Huerta, N. Romero, M. F. d. Romero, O. Perez, W. Campos, A. Navarro, "A study of diffusional zinc and aluminum- and zinc-based coatings on steel", Materials Performance ; VOL. 36 ; ISSUE: 6 ; PBD: Jun 1997, (1997) pp. 28-37 ; PL:.
    [54] Z. Panossian, L. Mariaca, M. Morcillo, S. Flores, J. Rocha, J. J. Pena, F. Herrera, F. Corvo, M. Sanchez, O. T. Rincon, G. Pridybailo, J. Simancas, "Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere", Surface and Coatings Technology, 190 (2005) 244-248.
    [55] M. Manna, G. Naidu, N. Rani, N. Bandyopadhyay, "Characterisation of coating on rebar surface using Hot-dip Zn and Zn-4.9Al-0.1 misch metal bath", Surface and Coatings Technology, 202 (2008) 1510-1516.
    [56] C. E. Jordan, A. R. Marder, "Fe-Zn phase formation in interstitial-free steels hot-dip galvanized at 450C (Part II 0.20wt% Al-Zn baths)", Journal of Materials Science, 32 (1997) 5603-5610.
    [57] Y. Y. Chen, S. C. Chung, H. C. Shih, "Studies on the initial stages of zinc atmospheric corrosion in the presence of chloride", Corrosion Science, 48 (2006) 3547-3564.

    下載圖示 校內:2010-07-27公開
    校外:2010-07-27公開
    QR CODE