簡易檢索 / 詳目顯示

研究生: 林玉涵
Lin, Yu-Han
論文名稱: 禾本科專一基因轉錄因子OsNACgs9缺失水稻影響營養和生殖生長
Mutation of a grass-specific transcription factor OsNACgs9 affecting vegetative and reproductive development in rice
指導教授: 李瑞花
Lee, Ruey-Hua
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 70
中文關鍵詞: OsNACgs9水稻NAC轉錄因子轉錄抑制轉殖營養生長生殖生長
外文關鍵詞: OsNACgs9, Rice, NAC transcription factor, SRDX transgenic plants, vegetative development, reproductive development
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • OsAkαGal編碼葉綠體鹼性α-半乳糖苷酶(OsAkαGal),是一種雙半乳糖基二酰基甘油(DGDG)的水解酶,在葉綠體類囊體膜降解過程中扮演重要功能。為了解OsAkαGal基因受生長發育及環境因子調控網絡,在這項研究中,我們利用OsAkαGal起始密碼子上游1kb啟動子的 DNA序列作當作bait,和由 1100個水稻(Oryza sativa cv. Nippobare)轉錄因子組成的基因庫進行高效率酵母單雜交篩選,其中我們分離出OsNACgs9轉錄因子會與OsAkαGal啟動子有強烈結合。 OsNACgs9編碼NAC(NAM,ATAF1/2和CUC)轉錄因子,經親緣關係樹分析OsNACgs9屬於新穎禾本科專一NAC亞群,在水稻基因體共有10個旁系同源基因,其中OsNACgs8在不同花發育過程中顯示出與OsNACgs9相同的基因表現模式。我們將OsNACgs9基因融合ERF-associated amphiphilic repression(EAR)基序,建構轉錄抑制轉殖水稻(ZmUbiP::OsNACgs9-SRDX),以克服旁系同源基因冗餘功能的問題。轉錄抑制轉殖水稻表觀型分析,大部分轉殖品系顯示植株高度和分櫱數明顯減少,並且葉片衰老延遲,與野生型植株相比有許多小穗未能正常充實造成40-70%空包率。OsNACgs9轉錄缺失的小穗有較大的柱頭。花粉活性及澱粉染色分析也顯示一些轉錄缺失植株的花粉有發育缺陷。原位雜交分析發現,OsNACgs9基因表現和qRT-PCR的結果一致,當花粉母細胞時期當花大小約為2 mm時基因表現最強,主要表現於雌蕊(柱頭、子房)及雄蕊(花粉細胞、花藥壁、花藥維管束、花絲)。已知OsbHLH142通過調節花藥發育期間絨氈層的分化和死亡來調控花粉發育,我們的數據也顯示,在osbhlh142基因缺失植株,OsNACgs9,OsNACgs8和OsAkαGal基因的表現量顯著下調,雖然OsNACgs9基因功能尚待更多研究證明,但綜合以上實驗結果初步顯示OsNACgs9可能參與營養和生殖生長的調控,不只影響植株分櫱及葉片老化,並影響花粉發育及合子後榖粒的充實,同時OsNACgs9和它的旁系同源基因OsNACgs8也可能受bHLH142基因的調控。

    OsAkaGal is a chloroplast alkaline -galactosidase. It degrades digalactosyl diacylglycerol (DGDG) that play important function in the disassembly of thylakoid membranes during chloroplast degradation. In this study, we have cloned OsAkaGal upstream 1kb DNA sequences from start codon and used as bait for high-throughput One-Yeast-Hybrid Screening using a library composed of 1100 transcription factors from Oryza sativa cv. Nippobare. We have identified OsNACgs9 transcription factor strongly interacted with the OsAkaGal promoter. OsNACgs9 encodes a novel grass-specific NAC (NAM, ATAF1/2, and CUC) transcription factor subfamily of 10 paralogous genes. Among these, OsNACgs8 also show similar gene expression pattern as OsNACgs9 during different stages of flower development. Florets (~ 2mm) at pollen mother cell developmental stage have strongest gene expression and decreased as development advanced. We have constructed OsNACgs9 fused to the ERF-associated amphiphilic repression (EAR) motif act as dominant repressor in gene transcription to overcome genetic redundancy in transgenic plants. Phenotyping of ZmUbiP::OsNACgs9-SRDX transgenic lines showed reduced plant height and tiller number, and delayed leaf senescence. Florets have bigger stigma. Some of these mutant lines also showed defects in pollen development at anthesis. Many of the spikelets in these transgenic lines failed to fill the grains and resulted 40 -70% empty seeds compared to wild-type plants. In situ hybridization analysis showed that OsNACgs9 is strongly expressed in the carpal (ovule and stigma) and stamen (pollen cell, anther wall, anther vascular bundle and filament) during flower development. OsbHLH142 is known to regulate pollen development by regulating tapetum differentiation and degeneration during anther development. Our data also showed the expression of OsNACgs9, OsNACgs8 and OsAkαGal was downregulated in osbhlh142 mutant plants. Our preliminary data suggests that OsNACgs9 might play regulatory roles in vegetative and reproductive development. It not only regulates tiller development and leaf senescence, but also controls pollen development and grain filling. Further investigation is needed to reveal interplay between OsNACgs9, OsNACgs8 and bHLH142 in the regulation of vegetative and reproductive growth.

    Abstract I 摘要 II Acknowledge III Contents IV Figure list VII 1. Introduction 1 1.1. Rice 1 1.2. Leaf Senescence 2 1.3. Structure and Function of Chloroplast 3 1.4. Composition of Thylakoid Membrane 5 1.5. Biosynthesis of Thylakoid Membrane Glycerolipids 7 1.6. Glycerolipid in Flower and Seed 8 1.7. Biochemistry of Galactolipid Degradation 9 1.8. NAC Transcription Factors 11 1.9. NAC Transcription Factors Regulate Organ Senescence 13 1.10. NAC Transcription Factors Regulate Reproductive Growth 13 1.11. Food Security and Rice Production 13 1.12. Research Aim 14 2. Material and Method 16 2.1. Plant Materials and Treatments 16 2.2. Genomic DNA Isolation 16 2.3. Genotyping 17 2.4. Total RNA Extraction 18 2.5. Semi-Quantitative Reverse TranscriptionPCR (Semi qRT-PCR) and Quantitative Reverse Transcription PCR (qRT-PCR) 20 2.6. Chlorophyll Measurements 21 2.7. RNA In Situ Hybridization 21 2.8. Pollen Fertility Test 22 3. Result 23 3.1. NAC Transcription Factor (OsNACgs9) Strongly Interacted With OsAkaGal 23 3.2. OsNACgs9 Belongs to a Grass-Specific NAC Transcription Factor Sub-Family 23 3.3. OsNACgs9 and OsAkαGal Are Highly Expression during Leaf Senescence 23 3.4. OsNACgs9 and OsAkaGal Are Involved in The Regulation of Flower and Seed Development 24 3.5. OsNACgs9 and OsNACgs8 Are Coexpression Genes. 25 3.6. Genotyping of UbiP::OsNACgs9-SRDX Transgenic Plants 25 3.7. UbiP::OsNACgs9-SRDX Transgenic Plants Showed Reduced Plant Height and Tiller Number 26 3.8. UbiP::OsNACgs9-SRDX Transgenic Plants Showed Delayed Leaf Senescence 26 3.9. UbiP::OsNACgs9-SRDX Transgenic Plants Have Larger Stigma 27 3.10. In situ Analysis of OsNACgs9 Expression in Floret Tissues 27 3.11. UbiP::OsNACgs9-SRDX Transgenic Plants Produced High Proportion of Starch-Engorged Pollens 28 3.12. UbiP::OsNACgs9-SRDX Transgenic Plants Have Lower Pollen Viability 28 3.13. Expression of OsNACgs9 and OsNACgs8 Transcripts Are Down Regulated in bhlh142 Mutant 29 3.14. Expression of OsAkαGal Transcripts Are Down Regulated in bhlh142 Mutant 29 3.15. Mutation of OsNACgs9 Reduced Panicle Number 30 3.16. Mutation of OsNACgs9 Affected Grain Filling 30 4. Discussion 32 5. Conclusion 37 6. Reference 38 7. Figure 50

    Addie Nina Olsen , Heidi A Ernst, Leila Lo Leggio, Karen Skriver. (2005). NAC Transcription Factors: Structurally Distinct, Functionally Diverse. Trends Plant Sci. 10(2):79-87
    Aichinger E, Kornet N, Friedrich T, Laux T (2012) Plant stem cell niches. Annu Rev Plant Biol. 63: 615–636
    Aida, M., Ishida, T., and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes, Development, 126, 1563–1570.
    Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997) Gene involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant, Plant Cell, 9: 841–857.
    Alan M. Myers, Martha G. James, Qiaohui Lin, Gibum Yi, Philip S. Stinard, Tracie A. Hennen-Bierwagen, Philip W. Becraft. (2011). Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. Plant Cell .23 (6): 2331-2347.
    Alexander MP (1980) A versatile stain for pollen fungi, yeast and bacteria. Stain Technol 55(1):13–18.
    Amini S, Rosli K, Abu-Bakar M-F, Alias H, Mat-Isa M-N, Juhari M-A-A, et al. (2019) Transcriptome landscape of Rafflesia cantleyi floral buds reveals insights into the roles of transcription factors and phytohormones in flower development. PLoS ONE. 14(12).
    Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J. (2001). Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA. 98: 10960–10965.
    Balazadeh S, Kwasniewski M, Caldana C, Mehrnia M, Zanor MI, Xue GP, Mueller-Roeber B. (2011) ORS1, an H(2)O(2)-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol Plant. 4:346-360.
    Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kohler B, Mueller-Roeber B. (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J.62:250-264.
    Basnet R., Zhang J., Hussain N., Shu Q (2019) Characterization and Mutational Analysis of a Monogalactosyldiacylglycerol Synthase Gene OsMGD2 in Rice. Front Plant Sci. 10: 992.
    Bedinger P (1992) The remarkable biology of pollen. Plant Cell. 4: 879–887
    Benning C. (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu. Rev. Cell Dev. Biol. 25: 71-91
    Boudière L. Michaud M., Petroutsos D. Rébeillé F. Falconet D., Bastien O., Roy S. Block GMA., Maréchal E. (2014). Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochimica et Biophysica Acta (BBA). 1837: 470-480.
    Breeze, E., Harrison, E., McHattie, S., Hughes, L., Hickman, R., Hill, C., Kiddle, S., Kim, Y. S., Penfold, C. A., Jenkins, D., Zhang, C. et al. (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell. 23, 873–894
    Chanjuan Mao, Songchong Lu, Bo Lv, Bin Zhang, Jiabin Shen, Jianmei He, Liqiong Luo, Dandan Xi, Xu Chen, Feng Ming. (2017). A Rice NAC Transcription Factor Promotes Leaf Senescence via ABA Biosynthesis. Plant physiol. 174: 1747-1763
    Chaudhury AM, Koltunow A, Payne T, Luo M, Tucker MR, Dennis ES, Peacock WJ (2001) Control of early seed development. Annu Rev Cell Dev Biol. 17: 677–699
    Chen, T.K., Yang, H.T., Fang, S.C., Lien, Y.C., Yang, T.T., Ko, S.S. (2016) Hybrid-Cut: An Improved Sectioning Method for Recalcitrant Plant Tissue Samples. J. Vis. Exp. (117), e54754, doi:10.3791/54754
    Chow WS, Kim EH, Horton P, Anderson JM. (2005). Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem. Photobiol. Sci.4: 1081-1090
    Clark, L. G., Zhang, W., and Wendel, J. F. (1995). A phylogeny of the grass family (Poaceae) based on ndhF sequence data. Syst. Bot. 20:436–460.
    Dekker J. P., Boekema E. J. (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim. Biophys. Acta.17066(1):12–39.
    Djanaguiraman, M., Narayanan, S., Erdayani, E. et al. (2020) Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biol. 20, 268.
    Dörmann P, Hoffmann-Benning S, Balbo I, Benning C. (1995). Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell, 7: 1801–10.
    Dorne A, Joyard J, Douce R (1990) Do thylakoids really contain phosphatidylcholine? Proc Natl Acad Sci USA. 87:71–74
    Duval M., Hsieh T. F., Kim S. Y., Thomas T. L. (2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain super family. Plant Mol. Biol. 50: 237–248
    Fageria NK, Baligar VC, Clark RB (2006) Physiology of crop production. The Haworth Press, New York pp.335.
    Fujii S and Toriyama K. (2009). Suppressed expression of RETROGREADE-REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. PNAS. 106: 9513-9518.
    Godfray H. C. J. et al. (2010) Food security: the challenge of feeding 9 billion people. Science 327, 812–818
    Gross BL, Zhao Z (2014) Archaelogical and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci U S A. 111:6190–6197.
    Guo S, Dai S, Singh PK, Wang H, Wang Y, Tan JLH, Wee W and Ito T (2018) A Membrane-Bound NAC-Like Transcription Factor OsNTL5 Represses the Flowering in Oryza sativa. Front. Plant Sci. 9:555.
    Guo Y, Gan S. (2006). AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 46(4):601–612.
    Ha CM, Jun JH, Fletcher JC (2010) Shoot apical meristem form and function. Curr Top Dev Biol. 91: 103–140
    Haniyeh Koochak, Sujith Puthiyaveetil, Daniel L. Mullendore, Meng Li, Helmut Kirchhoff. (2018). The structural and functional domains of plant thylakoid membranes. The Plant Journal. 97: 412-429.
    Hartel H, Lokstein H., Dormann P, Grimm B, Benning C. (1997) Changes in the composition of the photosynthetic apparatus in the galactolipid-deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiol., 115 :1175-1184
    Hörtensteiner S. and Kräutler B. (2011) Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta 1807: 977–988
    Huang D, Wang S, Zhang B, Shang-Guan K, Shi Y, Zhang D, Liu X, Wu K, Xu Z, Fu X, Zhou Y. (2015). A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. Plant cell. 27: 1681-1696.
    Inoue K. (2007) The chloroplast outer envelope membrane: the edge of light and excitement. J. Integr. Plant Biol.496(1):1100–1111
    Ishida, T., Aida, M., Takada, S., and Tasaka, M. (2000) Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Cell Physiol. 41: 60–67.
    Jarvis P, Dormann P, Peto C.A, Lutes J, Benning, Chory J. (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc. Natl. Acad. Sci. U. S. A., 97: 8175-8179
    Jed A Christianson, Elizabeth S. Dennis, Danny J Llewellyn & Iain W. Wilson (2010) ATAF NAC transcription factors: Regulators of plant stress signaling, Plant Signaling & Behavior. 5 (4):428-432,
    Jensen MK, Lindemose S, de Masi F, Reimer JJ, Nielsen M, Perera V, Workman CT, Turck F, Grant MR, Mundy J et al. (2013) ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana. FEBS Open Bio.3:321-327.
    Jensen, M. K., Kjaersgaard, T., Nielsen, M. M., Galberg, P., Petersen, K., et al. (2010) The Arabidopsis thaliana NAC transcription factor family: structurefunction relationships and determinants of ANAC019 stress signalling. Biochem. J. 426: 183–196.
    Jouhet J. (2013) Importance of the hexagonal lipid phase in biological membrane organization. Front. Plant Sci.4: 494.
    Jun-Ichi Itoh, Ken-Ichi Nonomura, Kyoko Ikeda, Shinichiro Yamaki, Yoshiaki Inukai, Hiroshi Yamagishi, Hidemi Kitano, Yasuo Nagato. (2005). Rice Plant Development: from Zygote to Spikelet. Plant and Cell Physiology, 46:23–47,
    K. Awai, E. Marechal, M.A. Block, D. Brun, T. Masuda, H. Shimada, K. Takamiya, H. Ohta, J. Joyard (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A.98: 10960-10965
    Khush GS (2005) Taxonomy, ecology and agronomy of rice cultivation vis-à-vis genetic engineering of rice. In: Chopra VL, Santharam S, Sharma RP (eds) Biosafety of transgenic rice. New Delhi, pp. 26–37
    Kikuchi S. (2010). Genome-wide analysis of NAC transcription factor family in rice. Gene. 465: 30–44
    Kim Y. S., Kim S. G., Park J. E., Park H. Y., Lim M. H., Chua N. H., et al. (2006). A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell. 18: 3132–3144
    Kim YS, Sakuraba Y, Han SH, Yoo SC, Paek NC. (2013). Mutation of the Arabidopsis NAC016 transcription factor delays leaf senescence. Plant Cell Physiol, 54:1660-1672.
    Ko J. H., Yang S. H., Park A. H., Lerouxel O., Han K. H. (2007). ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J. 50: 1035–1048.
    Ko S-S, Li M-J, Lin Y-J, Hsing H-X, Yang T-T, Chen T-K, Jhong C-M and Ku MS-B (2017) Tightly Controlled Expression of bHLH142 Is Essential for Timely Tapetal Programmed Cell Death and Pollen Development in Rice. Front. Plant Sci. 8:1258.
    Kobayashi K, Awai K, Takamiya K, Ohta H. (2004). Arabidopsis type B monogalactosyldiacylglycerol synthase genes are expressed during pollen tube growth and induced by phosphate starvation. Plant Physiol. 134: 640–8.
    Koichi Kobayashi. (2016). Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. Journal of Plant Research. Pp.565–580
    Koike S, Satake T. (1987) Sterility caused by cooling treatment at the flowering stage in rice plants. Japanese Journal of Crop Science. 56: 666–672.
    Laurence Boudière, Morgane Michaud, Dimitris Petroutsos, et al. (2014). Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochimica et Biophysica Acta. (1837): 470-480.
    Lim PO, Woo HR, Nam HG. (2003). Molecular genetics of leaf senescence in Arabidopsis. Trends Plant Sci. 8:272–78.
    Loll B, Kern J, Saenger W, Zouni A, Biesiadka J. (2005). Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature, 438, pp. 1040-1044
    Mao C., Lu S., Lv, B., Zhang B., Shen J., He J., Luo L., Xi D., Chen X., Ming F. (2017). A Rice NAC Transcription Factor Promotes Leaf Senescence via ABA Biosynthesis. Plant Physiology. 174: 1747-1763.
    Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P. (2007). Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol. 176: 288–298.
    Mathieu Gayral, Mathieu Fanuel, Hélène Rogniaux, Michèle Dalgalarrondo, Khalil Elmorjani, Bénédicte Bakan, Didier Marion. (2018). The Spatiotemporal Deposition of Lysophosphatidylcholine Within Starch Granules of Maize Endosperm and its Relationships to the Expression of Genes Involved in Endoplasmic Reticulum–Amyloplast Lipid Trafficking and Galactolipid Synthesis, Plant and Cell Physiology. 60: 139–151.
    Moreau P, Bessoule JJ, Mongrand S et al. (1998). Lipid trafficking in plant cells. Prog Lipid Res 37:371–391
    Muehe EM., Wangf TM., Kerl CF., Planer-Friedrich B., Fendorf S. (2019). Rice production threatened by coupled stresses of climate and soil arsenic. Nature Communications. 10: 4985.
    Muhammad Asad Ullah Asad, Shamsu Ado Zakari,Qian Zhao,Lujian Zhou,Yu Ye, Fangmin Cheng. (2019). Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants. Int J Mol Sci. 20(2): 256.
    Nakamura Y and Ohta H. (2007) The diacylglycerol forming pathways differ among floral organs of Petunia hybrida. FEBS Lett. 581:5475-5479.
    Nakamura Y, Arimitsu H, Yamaryo Y, Awai K, Masuda T, Shimada H, Takamiya K, Ohta H. (2003). Digalactosyldiacylglycerol is a Major Glycolipid in Floral Organs of Petunia hybrida. Lipids. 38:1107–1112.
    Nakamura Y, Kobayashi K, Ohta H. (2009). Activation of galactolipid biosynthesis in development of pistils and pollen tubes. Plant Physiol Biochem. 47:535 –539.
    Nakamura Y, Kobayashi K, Shimojima M, Ohta H. (2010). Biosynthesis and function of monogalactosyldiacylglycerol, the signature lipid of chloroplasts. The chloroplast: Basics and application. pp.185–202.
    Nam HG. (1997). Molecular genetic analysis of leaf senescence. Curr. Opin. Biotech. 8:200–7
    Nawaz A. Farooq M. (2017). Rice physiology. In: Chauhan B., Jabran K., Mahajan G. (eds) Rice production Worldwide. Springer, Cham.pp455-485.
    Noodén LD, Leopold AC. (1988). The phenomena of senescence and aging. In Senescence and Aging in Plants. San Diego: Academic. pp1-50
    Nuruzzaman M, Sharoni AM and Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 4:248.
    Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M, Ohmiya A (2016) The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci Rep. 6: 23609
    Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, et al. (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10: 239–247.
    Peleg Z., Blumwald E. (2011). Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol.14:290–295
    Puneet Paul, Balpreet K. Dhatt, Michael Miller, Jing J. Folsom, Zhen Wang, et al. (2020) MADS78 and MADS79 Are Essential Regulators of Early Seed Development in Rice. Plant Physiol. 182 :933-948.
    Pyung Ok Lim, Hyo Jung Kim, Hong Gil Nam. (2007). Leaf senescence. Annual Review of Plant Biology. 58:115-136.
    Ray D.K., Ramankutty N., Mueller N.D., West P.C., Foley J.A. (2012) Recent patterns of crop yield growth and stagnation. Nature Comm. 3:1293
    Ruey‐Hua Lee, Jen‐Hung Hsu, Hao‐Jen Huang, Shu‐Fang Lo, Shu‐Chen Grace Chen. (2009). Alkaline α‐galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice. New phytologist. 184: 596-606
    Ruey-Hua Lee, Mei-Chung Lin ,Shu-Chen Grace Chen.(2004). A novel alkaline α-galactosidase gene is involved in rice leaf senescence. Plant Molecular Biology. 55: 281–295
    Sabelli PA, Larkins BA (2009) The development of endosperm in grasses. Plant Physiol. 149: 14–26.
    Sakamoto T, Matsuoka M. (2008). Identifying and exploiting grain yield genes in rice. Curr. Opin. Plant Biol. 11: 209–14
    Sakamoto W. (2006). Protein degradation machineries in plastids. Annual Review of Plant Biology. 57: 599-621.
    Shibuya K. (2018). Molecular aspects of flower senescence and strategies to improve flower longevity. Breed Sci. 68(1): 99–108.
    Sperotto R. A., Ricachenevsky F. K., Duarte G. L., Boff T., Lopes K. L., Sperb E. R., et al. (2009). Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002.
    Swati Puranik , Pranav Pankaj Sahu, Prem S Srivastava, Manoj Prasad. (2012) NAC Proteins: Regulation and Role in Stress. Tolerance.Trends Plant Sci;17(6):369-81
    Swee-Suak Ko, Min-Jeng Li, Maurice Sun-Ben Ku, Yi-Cheng Ho, Yi-Jyun Lin, Ming-Hsing et al. (2014). The bHLH142 Transcription Factor Coordinates with TDR1 to Modulate the Expression of EAT1 and Regulate Pollen Development in Rice. Plant Cell.26:2486-2504.
    Tilman D., Balzer C., Hill J., Befort B. L. (2011) Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264.
    Toyosawa Y, Kawagoe Y, Matsushima R, Crofts N, Ogawa M, Fukuda M, Kumamaru T, Okazaki Y, Kusano M, Saito K, et al. (2016). Deficiency of starch synthase IIIa and IVb alters starch grains morphology from polyhedral to spherical in Rice endosperm. Plant Physiol. 170: 1255–1270.
    Vacic, V., Oldfield, C. J., Mohan, A., Radivojac, P., Cortese, M. S., et al. (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J. Proteome Res. 6: 6–2351.
    Vroemen, C.W. et al. (2003) The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15: 1563–1577.
    Ward J M , Kühn C, Tegeder M, Frommer W B. (1998) Sucrose transport in higher plants. Int Rev Cytol.178:41-71
    Wataru Sakamoto, Shin-ya Miyagishima, and Paul Jarvis. (2008). Chloroplast Biogenesis: Control of Plastid Development, Protein Import, Division and Inheritance," The Arabidopsis Book 2008(6)
    Weir, I. et al. (2004) CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131; 915–922.
    Wouter G. van Doorn, Chanattika Kamdee. (2014). Flower opening and closure: an update. Journal of Experimental Botany. 65(20): 5749–5757,
    Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, Zanor MI, AsensiFabado MA, Munne-Bosch S, Antonio C, Tohge T et al. (2012). JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell, 24:482-506.
    Wu X, Liu J, Li D, Liu C M. (2016) Rice caryopsis development II: Dynamic changes in the endosperm. Journal of Integrative Plant Biology.58:786-798.
    Wuhua Long, Yunlong Wang, Susong Zhu, Wen Jing, Yihua Wang et al. (2018). FLOURY SHRUNKEN ENDOSPERM1 connects phospholipid metabolism and amyloplast development in rice. Plant Physiol. 177: 698-712.
    Xie, Q. et al. (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024–3036
    Xing Y, Zhang Q. (2010). Genetic and molecular bases of rice yield. Annu. Rev. Plant Biol. 61: 421–42.
    Xuemin Ma, Youjun Zhang, Veronika Turečková, Gang-Ping Xue, Alisdair R. Fernie, Bernd Mueller-Roeber, Salma Balazadeh. (2018) The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato. Plant Physiol.177:1286-1302
    Yang SD, Seo PJ, Yoon HK, Park CM. (2011) The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell. 23:2155-2168.
    Yu, B., Xu, CC., Benning C. (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth Proc. Natl. Acad. Sci. U. S. A.99: 5732-5737
    Zhang Z., Dong J., Ji C., Wu Y., Messing J. (2019). NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. PNAS 116: 11223-11228.
    Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics. 38: 379–390
    Zhang, D., and Wilson, Z. A. (2009). Stamen specification and anther development in rice. Chin. Sci. Bull. 54: 2342–2353.

    無法下載圖示 校內:2025-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE