| 研究生: |
鄧宇倫 Deng, Yu-Luen |
|---|---|
| 論文名稱: |
介電泳微晶片在生醫診斷與生質燃料生產的應用:病原體與微藻的篩選及利用表面增強拉曼散射分析 Dielectrophoresis microchip for applications in medical diagnosis and biofuel production: Screening and SERS detection of pathogens and microalgae |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 微流體晶片 、介電泳 、表面增強拉曼散射 、微藻 、經皮藥物輸送 、微針 |
| 外文關鍵詞: | microfluidic chips, dielectrophoresis, surface enhanced Raman scattering (SERS), microalgae, transdermal drug delivery, microneedle |
| 相關次數: | 點閱:98 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在最近幾年間快速的生醫檢測分析需求在多個領域例如醫藥研究、病原體偵測、生質能生產、環境監控與本土安全均有顯著的成長。透過使用微機電技術製作出的微流體晶片具有少量樣品需求、更加快速的分析速度、較高的樣品負載量、複合式的檢測功能、相對簡單的樣品前處理程序以及良好的可攜帶性等優點,因此能夠更加貼近不同領域的需求。在本論文中,我們提出並且發展了數種微流體技術以應對上述各種領域的需求。在生質能源生產的部份我們製作出批次與連續流動式介電泳晶片來即時的分辨以及篩選出在培養過程中具有較高含油量的微藻,並且探討不同含油量的微藻細胞在非均勻的交流電場下的介電泳行為機制。在病原偵測的部份我們建立整合微針陣列的微流體系統,在交流電場的作用下菌血症病原之一的金黃色葡萄球菌成功與紅球分離並且聚集於微針尖端,加上尖端結構良好的拉曼散射增強效應,只需要稀少的細菌量即可確認感染菌種的拉曼特徵光譜。表面增強拉曼散射的機制與所謂的”熱點”數量有密切的相關性,我們使用感應耦合離子電漿蝕刻技術製作出不同尺度與密集程度的黑矽基板來進行相關的探討。當單位面積內所包含的黑矽尖錐結構越多則熱點的的數量也隨之增加,搭配適當厚度的金屬蒸鍍層來最佳化拉曼增強效果,我們能夠有效的檢測出10fM Rhodamine 6G分子的拉曼訊號。最後,我們提出一種相對快速、簡單而且可靠的製作技術來蝕刻出以polydimethyl siloxane為材質的微針結構進而應用在製作微針整合的微流體晶片與經皮藥物輸送領域。
In recent years, the need of rapid bio-detection and analysis in many territories such as medical research, pathogen detection, biomass production, environmental monitoring, homeland security have been increasing drastically. The microfluidic devices constructed by exploiting the MEMS (Micro-Electro-Mechanical System) technology can well meet the demands because they possess several advantages such as small amount sample required, faster analysis, high throughput, multiplexing, relatively simple procedure for sample pretreatment and increased portability. In this study, we addressed and developed some of microfluidic techniques for the applications in the abovementioned areas. To effectively select and identify the algal strains with high-lipid content and potentially monitor the cultivation process in biofuel production, we constructed the batch and continuous dielectrophoresis (DEP) microchip to better understand the flow behavior of microalgae with different lipid contents under the non-uniform AC electric field and utilize this information to perform continuous sorting and detection of microalgae. For fast analysis of pathogens, the microfluidic chips with microneedle array were fabricated and performed under the non-uniform AC electric field. By combining both the effects of dielectrophoresis and surface enhanced Raman spectroscopy (SERS), the Staphylococcus aureus (S. aureus) was first effectively separated from the red blood cells (RBCs) and concentrated at the tips of the microneedle array, followed by analysis through SERS. For better heterogeneous SERS detection, one of the important parameters is the amount of the “hot spots” on the SERS substrates. To realize the effect of “hot spots” on SERS detection, several black silicon (BS) surfaces consisting of different tip densities which correspond to different amount of “hot spots” were constructed via inductively coupled plasma etching and gold evaporation. It was concluded that the SERS spectra of rhodamine 6G molecules at solution concentration as low as 10 fM can be obtained by using the optimized BS surface. Finally, a relative rapid, simple and reliable technique to fabricate microneedles by 3D polydimethylsiloxane (PDMS) etching was proposed and developed, which can be used to construct the microfluidic chip with microneedle array and in the applications of transdermal drug delivery.
Reference
[1] R. Antony, M.S.G. Nandagopal, N. Sreekumar, N. Selvaraju, Detection principles and development of microfluidic sensors in the last decade, Microsyst Technol, 20(2014) 1051-61.
[2] I. Doh, Y.H. Cho, A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process, Sensors and Actuators a-Physical, 121(2005) 59-65.
[3] C.S. Kim, J. Park, Influence of oxygen microenvironment on microfluidic glucose sensor performance, 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology (IEEE Cat No 05EX937), (2005) 26-7.
[4] I.F. Cheng, H. Huan-Wen, C. Hsien-Chang, Dielectrophoresis and shear-enhanced sensitivity and selectivity of DNA hybridization for the rapid discrimination of Candida species, Biosensors & Bioelectronics, 33(2012) 36-43.
[5] V.F. Curto, C. Fay, S. Coyle, R. Byrne, C. O'Toole, C. Barry, et al., Real-time sweat pH monitoring based on a wearable chemical barcode micro-fluidic platform incorporating ionic liquids, Sens Actuator B-Chem, 171(2012) 1327-34.
[6] J. Cleary, C. Slater, C. McGraw, D. Diamond, An autonomous microfluidic sensor for phosphate: On-site analysis of treated wastewater, Ieee Sensors Journal, 8(2008) 508-15.
[7] T. Mueller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, G. Fuhr, A 3-D microelectrode system for handling and caging single cells and particles, Biosensors and Bioelectronics, 14(1999) 247-56.
[8] J. Shi, H. Huang, Z. Stratton, Y. Huang, T.J. Huang, Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW), Lab on a Chip, 9(2009) 3354-9.
[9] N. Minc, P. Bokov, K.B. Zeldovich, C. Futterer, J.L. Viovy, K.D. Dorfman, Motion of single long DNA molecules through arrays of magnetic columns, Electrophoresis, 26(2005) 362-75.
[10] I.F. Cheng, C.C. Lin, D.Y. Lin, H. Chang, A dielectrophoretic chip with a roughened metal surface for on-chip surface-enhanced Raman scattering analysis of bacteria, Biomicrofluidics, 4(2010).
[11] A. Hyldgard, K. Birkelund, J. Janting, E.V. Thomsen, Direct media exposure of MEMS multi-sensor systems using a potted-tube packaging concept, Sensors and Actuators a-Physical, 142(2008) 398-404.
[12] C. Iliescu, G.L. Xu, V. Samper, F.E.H. Tay, Fabrication of a dielectrophoretic chip with 3D silicon electrodes, J Micromech Microeng, 15(2005) 494-500.
[13] B.Y. Park, M.J. Madou, 3-D electrode designs for flow-through dielectrophoretic systems, ELECTROPHORESIS, 26(2005) 3745-57.
[14] L. Wang, L.A. Flanagan, N.L. Jeon, E. Monuki, A.P. Lee, Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry, Lab on a Chip, 7(2007) 1114-20.
[15] N. Lewpiriyawong, K. Kandaswamy, C. Yang, V. Ivanov, R. Stocker, Microfluidic Characterization and Continuous Separation of Cells and Particles Using Conducting Poly(dimethyl siloxane) Electrode Induced Alternating Current-Dielectrophoresis, Analytical Chemistry, 83(2011) 9579-85.
[16] B.W. Barry, Novel mechanisms and devices to enable successful transdermal drug delivery, European Journal of Pharmaceutical Sciences, 14(2001) 101-14.
[17] A.C. Williams, B.W. Barry, Penetration enhancers, Advanced Drug Delivery Reviews, 56(2004) 603-18.
[18] M.J. Pikal, The role of electroosmotic flow in transdermal iontophoresis, Advanced Drug Delivery Reviews, 46(2001) 281-305.
[19] W. Martanto, J.S. Moore, T. Couse, M.R. Prausnitz, Mechanism of fluid infusion during microneedle insertion and retraction, Journal of Controlled Release, 112(2006) 357-61.
[20] P.J.L. Williams, Biofuel: microalgae cut the social and ecological costs, Nature, 450(2007) 478-.
[21] Y. Chisti, Biodiesel from microalgae, Biotechnol Adv, 25(2007) 294-306.
[22] M.F. Montero, M. Aristizabal, G.G. Reina, Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting, J Appl Phycol, 23(2011) 1053-7.
[23] A.A. Kayani, K. Khoshmanesh, S.A. Ward, A. Mitchell, K. Kalantar-Zadeh, Optofluidics incorporating actively controlled micro- and nano-particles, Biomicrofluidics, 6(2012).
[24] C. Monat, P. Domachuk, C. Grillet, M. Collins, B.J. Eggleton, M. Cronin-Golomb, et al., Optofluidics: a novel generation of reconfigurable and adaptive compact architectures, Microfluidics and Nanofluidics, 4(2008) 81-95.
[25] D. Psaltis, S.R. Quake, C.H. Yang, Developing optofluidic technology through the fusion of microfluidics and optics, Nature, 442(2006) 381-6.
[26] Y. Fainman, Optofluidics fundamentals, devices, and applications, Biophotonics series, McGraw-Hill, New York, 2010, pp. 1 online resource (xvii, 510 p., 16 p. of plates).
[27] H. Morgan, M.P. Hughes, N.G. Green, Separation of submicron bioparticles by dielectrophoresis, Biophys J, 77(1999) 516-25.
[28] N.G. Green, H. Morgan, Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces, J Phys D-Appl Phys, 31(1998) L25-L30.
[29] N.G. Green, H. Morgan, Dielectrophoretic investigations of sub-micrometre latex spheres, J Phys D-Appl Phys, 30(1997) 2626-33.
[30] N.G. Green, H. Morgan, Dielectrophoretic separation of nano-particles, J Phys D-Appl Phys, 30(1997) L41-L4.
[31] X.Y. Hu, P.H. Bessette, J.R. Qian, C.D. Meinhart, P.S. Daugherty, H.T. Soh, Marker-specific sorting of rare cells using dielectrophoresis, Proceedings of the National Academy of Sciences of the United States of America, 102(2005) 15757-61.
[32] J. Kneipp, H. Kneipp, W.L. Rice, K. Kneipp, Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles, Analytical Chemistry, 77(2005) 2381-5.
[33] T. Park, S. Lee, G.H. Seong, J. Choo, E.K. Lee, Y.S. Kim, et al., Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: confocal surface-enhanced Raman spectroscopic study, Lab on a Chip, 5(2005) 437-42.
[34] J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp, In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates, Nano Letters, 6(2006) 2225-31.
[35] Fleischm.M, P.J. Hendra, McQuilla.Aj, RAMAN-SPECTRA OF PYRIDINE ADSORBED AT A SILVER ELECTRODE, Chem Phys Lett, 26(1974) 163-6.
[36] K. Kneipp, H. Kneipp, G. Deinum, I. Itzkan, R.R. Dasari, M.S. Feld, Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering, Applied Spectroscopy, 52(1998) 175-8.
[37] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari, et al., Single molecule detection using surface-enhanced Raman scattering (SERS), Physical Review Letters, 78(1997) 1667-70.
[38] H. Kneipp, K. Kneipp, Surface-enhanced hyper Raman scattering in silver colloidal solutions, J Raman Spectrosc, 36(2005) 551-4.
[39] H.S. Cho, B. Lee, G.L. Liu, A. Agarwal, L.P. Lee, Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration, Lab on a Chip, 9(2009) 3360-3.
[40] P. Verma, K. Yamada, H. Watanabe, Y. Inouye, S. Kawata, Near-field Raman scattering investigation of tip effects on C-60 molecules, Physical Review B, 73(2006).
[41] T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging, Physical Review Letters, 92(2004).
[42] N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, S. Kawata, Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy, Chem Phys Lett, 376(2003) 174-80.
[43] S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, Microfabricated microneedles: A novel approach to transdermal drug delivery, J Pharm Sci, 87(1998) 922-5.
[44] H. Jansen, M. de Boer, H. Wensink, B. Kloeck, M. Elwenspoek, The black silicon method. VIII. A study of the performance of etching silicon using SF6/O-2-based chemistry with cryogenical wafer cooling and a high density ICP source, Microelectron J, 32(2001) 769-77.
[45] C. Hedlund, H.O. Blom, S. Berg, MICROLOADING EFFECT IN REACTIVE ION ETCHING, J Vac Sci Technol A-Vac Surf Films, 12(1994) 1962-5.
[46] S. Basuray, H.H. Wei, H.C. Chang, Dynamic double layer effects on ac-induced dipoles of dielectric nanocolloids, Biomicrofluidics, 4(2010).
[47] M. Sureda, A. Miller, F.J. Diez, In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements, Electrophoresis, 33(2012) 2759-68.
[48] Y.S. Huh, A.J. Chung, B. Cordovez, D. Erickson, Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells, Lab on a Chip, 9(2009) 433-9.
[49] K. Kneipp, H. Kneipp, Single molecule Raman scattering, Applied Spectroscopy, 60(2006) 322A-34A.
[50] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering: A new tool for biomedical spectroscopy, Current Science, 77(1999) 915-24.
[51] K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annual Review of Physical Chemistry2007, pp. 267-97.
[52] K. Kneipp, H. Kneipp, J. Kneipp, Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess - From single-molecule Raman spectroscopy to ultrasensitive probing in live cells, Accounts of Chemical Research, 39(2006) 443-50.
[53] K.H. Cho, J. Choo, S.W. Joo, Surface-enhanced Raman scattering and density functional theory calculation of uracil on gold and silver nanoparticle surfaces, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 61(2005) 1141-5.
[54] X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, Z.Q. Tian, Surface-enhanced Raman spectroscopy: substrate-related issues, Analytical and Bioanalytical Chemistry, 394(2009) 1729-45.
[55] Y.S. Huh, A.J. Lowe, A.D. Strickland, C.A. Batt, D. Erickson, Surface-Enhanced Raman Scattering Based Ligase Detection Reaction, Journal of the American Chemical Society, 131(2009) 2208-13.
[56] M. Moskovits, SURFACE-ENHANCED SPECTROSCOPY, Rev Mod Phys, 57(1985) 783-826.
[57] I. Talian, K.B. Mogensen, A. Orinak, D. Kaniansky, J. Hubner, Surface-enhanced Raman spectroscopy on novel black silicon-based nanostructured surfaces, J Raman Spectrosc, 40(2009) 982-6.
[58] C.-M. Hsu, S.T. Connor, M.X. Tang, Y. Cui, Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching, Appl Phys Lett, 93(2008).
[59] U.S. Dinish, F.C. Yaw, A. Agarwal, M. Olivo, Development of highly reproducible nanogap SERS substrates: Comparative performance analysis and its application for glucose sensing, Biosensors & Bioelectronics, 26(2011) 1987-92.
[60] S.K. Srivastava, D. Kumar, Vandana, M. Sharma, R. Kumar, P.K. Singh, Silver catalyzed nano-texturing of silicon surfaces for solar cell applications, Solar Energy Materials and Solar Cells, 100(2012) 33-8.
[61] S.L. Kleinman, B. Sharma, M.G. Blaber, A.I. Henry, N. Valley, R.G. Freeman, et al., Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy, Journal of the American Chemical Society, 135(2013) 301-8.
[62] X. Zhang, C.R. Yonzon, M.A. Young, D.A. Stuart, R.P. Van Duyne, Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography, IEE Proceedings Nanobiotechnology, 152(2005) 195-206.
[63] M.J. de Boer, J.G.E. Gardeniers, H.V. Jansen, E. Smulders, M.J. Gilde, G. Roelofs, et al., Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures, J Microelectromech Syst, 11(2002) 385-401.
[64] Y.F. Li, J.H. Zhang, S.J. Zhu, H.P. Dong, Z.H. Wang, Z.Q. Sun, et al., Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings, J Mater Chem, 19(2009) 1806-10.
[65] V. Jokinen, L. Sainiemi, S. Franssila, Complex droplets on chemically modified silicon nanograss, Adv Mater, 20(2008) 3453-+.
[66] I. Talian, M. Aranyosiova, A. Orinak, D. Velic, D. Hasko, D. Kaniansky, et al., Functionality of novel black silicon based nanostructured surfaces studied by TOF SIMS, Appl Surf Sci, 256(2010) 2147-54.
[67] W. Wu, M. Hu, F.S. Ou, Z.Y. Li, R.S. Williams, Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy, Nanotechnology, 21(2010).
[68] C.Y. Chen, K.L. Yeh, R. Aisyah, D.J. Lee, J.S. Chang, Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review, Bioresour Technol, 102(2011) 71-81.
[69] C.Y. Chen, K.L. Yeh, H.M. Su, Y.C. Lo, W.M. Chen, J.S. Chang, Strategies to Enhance Cell Growth and Achieve High-Level Oil Production of a Chlorella vulgaris Isolate, Biotechnol Prog, 26(2010) 679-86.
[70] M.S. Schmidt, J. Hubner, A. Boisen, Large Area Fabrication of Leaning Silicon Nanopillars for Surface Enhanced Raman Spectroscopy, Adv Mater, 24(2012) OP11-OP8.
[71] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Ultrasensitive chemical analysis by Raman spectroscopy, Chemical Reviews, 99(1999) 2957-+.
[72] J.C. Hulteen, D.A. Treichel, M.T. Smith, M.L. Duval, T.R. Jensen, R.P. Van Duyne, Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays, J Phys Chem B, 103(1999) 3854-63.
[73] Y.Y. Huang, C.M. Beal, W.W. Cai, R.S. Ruoff, E.M. Terentjev, Micro-Raman Spectroscopy of Algae: Composition Analysis and Fluorescence Background Behavior, Biotechnol Bioeng, 105(2010) 889-98.
[74] A.R. Denet, R. Vanbever, V. Preat, Skin electroporation for transdermal and topical delivery, Advanced Drug Delivery Reviews, 56(2004) 659-74.
[75] A.A. Hamzah, N. Abd Aziz, B.Y. Majlis, J. Yunas, C.F. Dee, B. Bais, Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles, J Micromech Microeng, 22(2012).
[76] N. Wilke, A. Mulcahy, S.R. Ye, A. Morrissey, Process optimization and characterization of silicon microneedles fabricated by wet etch technology, Microelectron J, 36(2005) 650-6.
[77] S.O. Choi, Y.C. Kim, J.H. Park, J. Hutcheson, H.S. Gill, Y.K. Yoon, et al., An electrically active microneedle array for electroporation, Biomedical Microdevices, 12(2010) 263-73.
[78] J.H. Park, Y.K. Yoon, S.O. Choi, M.R. Prausnitz, M.G. Allen, Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery, Ieee Transactions on Biomedical Engineering, 54(2007) 903-13.
[79] V.V. Yuzhakov, Microneedle array, patch, and applicator for transdermal drug delivery, 2010.
[80] F.J. Verbaan, S.M. Bal, D.J. van den Berg, J.A. Dijksman, M. van Hecke, H. Verpoorten, et al., Improved piercing of microneedle arrays in dermatomed human skin by an impact insertion method, Journal of Controlled Release, 128(2008) 80-8.
[81] W. Martanto, S.P. Davis, N.R. Holiday, J. Wang, H.S. Gill, M.R. Prausnitz, Transdermal delivery of insulin using microneedles in vivo, Pharmaceutical Research, 21(2004) 947-52.
[82] K. Lee, H.C. Lee, D.-S. Lee, H. Jung, Drawing Lithography: Three-Dimensional Fabrication of an Ultrahigh-Aspect-Ratio Microneedle, Adv Mater, 22(2010) 483-+.
[83] J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H.K. Wu, O.J.A. Schueller, et al., Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 21(2000) 27-40.
[84] D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Rapid prototyping of microfluidic systems in poly(dimethylsiloxane), Analytical Chemistry, 70(1998) 4974-84.
[85] N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature, 393(1998) 146-9.
[86] B. Balakrisnan, S. Patil, E. Smela, Patterning PDMS using a combination of wet and dry etching, J Micromech Microeng, 19(2009).
[87] S. Takayama, E. Ostuni, X.P. Qian, J.C. McDonald, X.Y. Jiang, P. LeDuc, et al., Topographical micropatterning of poly(dimethylsiloxane) using laminar flows of liquids in capillaries, Adv Mater, 13(2001) 570-+.
[88] Y. Nishinaka, R. Jun, G.S. Prihandana, N. Miki, Fabrication of Polymer Microneedle Electrodes Coated with Nanoporous Parylene, Japanese Journal of Applied Physics, 52(2013).
[89] Y. Ami, H. Tachikawa, N. Takano, N. Miki, Formation of polymer microneedle arrays using soft lithography, Journal of Micro-Nanolithography Mems and Moems, 10(2011).
[90] Z. Xin, Z. Yi, Cellular mechanics study in cardiac myocytes using PDMS pillars array, Sensors and Actuators A (Physical), 125(2006) 398-404.
[91] H. Shinohara, H. Goto, T. Kasahara, J. Mizuno, Fabrication of a Polymer High-Aspect-Ratio Pillar Array Using UV Imprinting, Micromachines, 4(2013) 157-67.
[92] C. Padeste, H. Ozcelik, J. Ziegler, A. Schleunitz, M. Bednarzik, D. Yucel, et al., Replication of high aspect ratio pillar array structures in biocompatible polymers for tissue engineering applications, Microelectronic Engineering, 88(2011) 1836-9.
[93] N.J. Sniadecki, C.S. Chen, Microfabricated Silicone Elastomeric Post Arrays for Measuring Traction Forces of Adherent Cells, in: W. Yu‐Li, E.D. Dennis (Eds.), Methods in Cell Biology, Academic Press2007, pp. 313-28.
[94] A. Singh, S.I. Olsen, A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels, Appl Energy, 88(2011) 3548-55.
[95] K.G. Satyanarayana, A.B. Mariano, J.V.C. Vargas, A review on microalgae, a versatile source for sustainable energy and materials, Int J Energy Res, 35(2011) 291-311.
[96] J.C. Priscu, L.R. Priscu, A.C. Palmisano, C.W. Sullivan, estimation of neutral lipid-levels in antarctic sea ice microalgae by nile red fluorescence, Antarct Sci, 2(1990) 149-55.
[97] E.G. Bligh, Citation Classic - Rapid Method of Total Lipid Extraction and Purification, Current Contents, (1978) 11-.
[98] A. Ramos, H. Morgan, N.G. Green, A. Castellanos, Ac electrokinetics: a review of forces in microelectrode structures, J Phys D-Appl Phys, 31(1998) 2338-53.
[99] H. Morgan, N.G. Green, Dielectrophoretic manipulation of rod-shaped viral particles, J Electrost, 42(1997) 279-93.
[100] H.A. Pohl, K. Pollock, J.S. Crane, dielectrophoretic force a comparison of theory and experiment, Journal of Biological Physics, 6(1978) 133-60.
[101] M.P. Hughes, H. Morgan, Dielectrophoretic trapping of single sub-micrometre scale bioparticles, J Phys D-Appl Phys, 31(1998) 2205-10.
[102] A.C. Sabuncu, J.A. Liu, S.J. Beebe, A. Beskok, Dielectrophoretic separation of mouse melanoma clones, Biomicrofluidics, 4(2010).
[103] V.S. Rao, V. Kripesh, S.W. Yoon, A.A.O. Tay, A thick photoresist process for advanced wafer level packaging applications using JSR THB-151N negative tone UV photoresist, J Micromech Microeng, 16(2006) 1841-6.
[104] Y. Huang, R. Holzel, R. Pethig, X.B. Wang, DIFFERENCES IN THE AC ELECTRODYNAMICS OF VIABLE AND NON-VIABLE YEAST CELLS DETERMINED THROUGH COMBINED DIELECTROPHORESIS AND ELECTROROTATION STUDIES, Physics in Medicine and Biology, 37(1992) 1499-517.
[105] S. Ogata, T. Yasukawa, T. Matsue, Dielectrophoretic manipulation of a single chlorella cell with dual-microdisk electrode, Bioelectrochemistry, 54(2001) 33-7.
[106] S.-H. Liao, I.F. Cheng, H.-C. Chang, Precisely sized separation of multiple particles based on the dielectrophoresis gradient in the z-direction, Microfluidics and Nanofluidics, 12(2012) 201-11.