簡易檢索 / 詳目顯示

研究生: 黃慶益
Huang, Cing-Yi
論文名稱: 於數位雷射中生成任意場型之研究
Study on generating arbitrary light field with digital lasers
指導教授: 朱淑君
Chu, Shu-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: Digital laser(數位雷射)Intra-cavity beam shaping(腔內雷射整形)Spatial light modulator(空間光調制器)Arbitrary beam(任意光場)
外文關鍵詞: Digital laser, Intra-cavity beam shaping, Spatial light modulator, Arbitrary beam
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究目的是透過模擬及實驗探討在數位雷射中使用單點高斯光束為最小單位,透過多點高斯光束的疊加,於數位雷射中產生各類的目標光束。本研究中透過改變雷射共振腔內空間光調變器投影的相位資訊,可於雷射共振腔腔內,生成具有任意指定場型的光束。首先,架設出L型數位雷射,詳細討論影響生成任意光場的各個重要參數,並且 利用高斯光束疊加生成各種強度均勻光場以及強度連續變化的光場。透過本論文的研究,利用數位雷射產生了各類具有任意場型的光場,包含了:能量呈均勻分布的矩形、三角形、T字型雷射光束和強度呈連續變化分布的傾斜矩形光場、三角錐、四角錐、圓球能量分布光場 ,以及環型陣列光場。研究結果發現實驗結果均與模擬計算中的預測非常相似,使用高斯光束疊加的方法確實能有效的於數位雷射中生成任意場型。本論文之研究成果將有益於各類結構光束之研究及應用。

    The purpose of this research is to generate an arbitrary beam only by designing the phase information projected on the spatial light modulator (SLM) to change the boundary conditions of the laser cavity. This study provided a way that beams with any specified field, superposition of multiple Gaussian beams, can be generated in digital laser. In this thesis, we demonstrated the triangular, square, T-shaped uniform energy distribution laser beams and compared the experimental results with the prediction of simulation. Furthermore, the superposition of multiple Gaussian beams with different amplitudes also can generate a continuous distribution light field with different intensity, including pentahedron, tetrahedron, and sphere energy distribution light field. The consequences of this examination could be profitable in numerous territories, for example, optical tweezers, lithography, photopolymerization, material processing, and different applications.

    中文摘要 II 英文延伸摘要(Extended Abstract) III 致謝 VI 目錄 VII 圖目錄 IX 第一章 前言 1 第二章 雷射原理與雷射模態的模擬方法 3 2.1 雷射原理簡介 3 2.2 雷射模態模擬方法 7 第三章 數位雷射簡介 10 3.1 雷射光束整形 10 3.2 空間光調變器 11 3.3 數位雷射 13 第四章 多點雷射的產生及建構任意場型雷射 16 4.1核心概念: 邊界相位的設計 16 4.2 實驗架設: L型數位雷射 21 4.3 實驗步驟 24 第五章 利用多點雷射疊加生成任意均勻場型雷射 26 5.1 各個高斯光束間距的影響 26 5.2 增益範圍大小的影響 32 5.3 0-π相位光柵取代比例的影響 36 5.4 利用多點疊加生成任意場型雷射 40 5.5 輸入功率與輸出功率的關係 44 第六章 利用多點疊加生成不同強度連續變化光場 47 6.1 不同強度連續分布光場 47 6.2 多點與卷積生成場型比較 57 第七章 環形光場與環形光場陣列 59 第八章 結論與未來展望 64 8.1 結論 64 8.2 未來展望 65 參考文獻 66

    1 David, C., Wei, J., Lippert, T. & Wokaun, A. Diffractive grey-tone phase masks for laser ablation lithography. Microelectronic Engineering 5758,453-460, (2001).
    2 Valentin, G. et al. Fast dynamic interferometric lithography for large submicrometric period diffraction gratings production. Optical Engineering 52,9, 1-8, (2013).
    3 Visconti, P., Turco, C., Rinaldi, R. & Cingolani, R. Nanopatterning of organic and inorganic materials by holographic lithography and plasma etching. Microelectronic Engineering 53,391-394, (2000).
    4 Daria, V. R., Eriksen, R. L. & Glückstad, J. Dynamic optical manipulation of colloidal systems using a spatial light modulator. Journal of Modern Optics 50,10, 1601-1614, (2003).
    5 Eriksen, R. L., Daria, V. R., Rodrigo, P. J. & Glückstad, J. Computer-controlled orientation of multiple optically-trapped microscopic particles. Microelectronic Engineering 67-68,872-878, (2003).
    6 Macdonald, M. et al. Creation and Manipulation of Three-Dimensional Optically Trapped Structures. Science (New York, N.Y.) 296,1101-1103, (2002).
    7 Gittard, S. D. et al. Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed. Opt. Express 2,11, 3167-3178, (2011).
    8 Iwata, F., Kaji, M., Suzuki, A., Ito, S. & Nakao, H. Local electrophoresis deposition of nanomaterials assisted by a laser trapping technique. Nanotechnology 20,23, 235303, (2009).
    9 Jenness, N. J. et al. Three-dimensional parallel holographic micropatterning using a spatial light modulator. Opt. Express 16,20, 15942-15948, (2008).
    10 Matsuura, T., Takai, T. & Iwata, F. Local electrophoresis deposition assisted by laser trapping coupled with a spatial light modulator for three-dimensional microfabrication. Japanese Journal of Applied Physics 56,10, 105502, (2017).
    11 Obata, K., Koch, J., Hinze, U. & Chichkov, B. N. Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt. Express 18,16, 17193-17200, (2010).
    12 Takai, T., Nakao, H. & Iwata, F. Three-dimensional microfabrication using local electrophoresis deposition and a laser trapping technique. Opt. Express 22,23, 28109-28117, (2014).
    13 Yang, L. et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Optics and Lasers in Engineering 70, (2015).
    14 Cherezova, T. Y., Kaptsov, L. N. & Kudryashov, A. V. Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror. Appl. Opt. 35,15, 2554-2561, (1996).
    15 Bourderionnet, J., Brignon, A., Huignard, J. P., Delboulbé, A. & Loiseaux, B. Spatial mode control of a diode-pumped Nd:YAG laser by an intracavity liquid-crystal light valve. Opt. Lett. 26,24, 1958-1960, (2001).
    16 Lubeigt, W., Valentine, G., Girkin, J., Bente, E. & Burns, D. Active transverse mode control and optimisation of an all-solid-state laser using an intracavity adaptive-optic mirror. Opt. Express 10,13, 550-555, (2002).
    17 Caley, A. J., Thomson, M. J., Liu, J., Waddie, A. J. & Taghizadeh, M. R. Diffractive optical elements for high gain lasers with arbitrary output beam profiles. Opt. Express 15,17, 10699-10704, (2007).
    18 Lubeigt, W., Griffith, M., Laycock, L. & Burns, D. Reduction of the time-to-full-brightness in solid-state lasers using intra-cavity adaptive optics. Opt. Express 17,14, 12057-12069, (2009).
    19 Ngcobo, S., Litvin, I., Burger, L. & Forbes, A. A digital laser for on-demand laser modes. Nature Communications 4,1, 2289, (2013).
    20 Chen, X., Liu, S., Lin, Z., Chen, Z. & Pu, J. Dual-cavity digital laser for intra-cavity mode shaping and polarization control. Opt. Express 26,14, 18182-18189, (2018).
    21 Tsai, K.-F. & Chu, S.-C. Generating laser output with arbitrary lateral shape by using multi-point beam superposition method in digital lasers. Laser Physics 28,7, 075801, (2018).
    22 Gandhi, V. et al. Diffractive optical elements for optical identification. Appl. Opt. 54,7, 1606-1611, (2015).
    23 Gissibl, T., Schmid, M. & Giessen, H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica 3,4, 448-451, (2016).
    24 Lee, W. M., Yuan, X. C. & Cheong, W. C. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Opt. Lett. 29,15, 1796-1798, (2004).
    25 Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. & Viegas, J. Optical fibers as beam shapers: from Gaussian beams to optical vortices. Opt. Lett. 41,10, 2137-2140, (2016).
    26 Arrizón, V., Ruiz, U., Sánchez-de-la-Llave, D., Mellado-Villaseñor, G. & Ostrovsky, A. S. Optimum generation of annular vortices using phase diffractive optical elements. Opt. Lett. 40,7, 1173-1176, (2015).
    27 Davis, J. A., Carcole, E. & Cottrell, D. M. Nondiffracting interference patterns generated with programmable spatial light modulators. Appl. Opt. 35,4, 599-602, (1996).
    28 Tsai, K.-F. & Chu, S.-C. Numerical study on the selective excitation of Helmholtz–Gauss beams in end-pumped solid-state digital lasers with the control of the laser gain transverse position provided by off-axis end pumping. Laser Physics 28,3, 035801, (2018).
    29 蔡克凡. 於數位雷射中產生贗無繞射光束及結構光束之共振腔設計及其數值模擬探討. 國立成功大學博士論文, (2018).
    30 吳奇軒. 以數位雷射產生結構光束之探討. 國立成功大學碩士論文, (2018).
    31 Zhang, H. et al. Characterization of the laser crystal Nd:GdVO4. J. Opt. Soc. Am. B 19,1, 18-27, (2002).
    32 Endo, M. Numerical simulation of an optical resonator for generation of a doughnut-like laser beam. Opt. Express 12,9, 1959-1965, (2004).
    33 Endo, M., Kawakami, M., Nanri, K., Takeda, S. & Fujioka, T. Two-dimensional simulation of an unstable resonator with a stable core. Appl. Opt. 38,15, 3298-3307, (1999).
    34 Endo, M., Yamaguchi, S., Uchiyama, T. & Fujioka, T. Numerical simulation of the w-axicon type optical resonator for coaxial slab CO2lasers. Journal of Physics D: Applied Physics 34,1, 68-77, (2000).
    35 Goodman, J. W. Introduction to Fourier Optics. (W. H. Freeman, 2005).
    36 Ren, Y. et al. Dynamic generation of Ince-Gaussian modes with a digital micromirror device(Highlighted on the Cover). Journal of Applied Physics 117,133106, (2015).
    37 Chen, Y., Fang, Z.-X., Ren, Y.-X., Gong, L. & Lu, R.-D. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device. Appl. Opt. 54,27, 8030-8035, (2015).
    38 Noharet, B., Wang, Q., Junique, S., Agren, D. & Almqvist, S. Multiple quantum-well spatial light modulators for optical signal processing. Vol. 5618 ESD (SPIE, 2004).
    39 Bitou, Y. & Minemoto, T. High-contrast spatial light modulator by use of the electroabsorption and the electro-optic effects in a GaAs single crystal. Appl. Opt. 37,20, 4347-4356, (1998).
    40 Huang, C.-Y., Chang, K.-C. & Chu, S.-C. Experimental Investigation of Generating Laser Beams of on-Demand Lateral Field Distribution from Digital Lasers. Materials 12,2226, (2019).
    41 Stelzer, E. H. K. Light-sheet fluorescence microscopy for quantitative biology. Nature Methods 12,1, 23-26, (2015).

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE