| 研究生: |
林建龍 Lin, Chain-Long |
|---|---|
| 論文名稱: |
鉍含量、氧化鉍緩衝層及鉭摻雜對化學溶液鍍著法生長鉍鑭鈦膜鐵電性質之影響 Effects of excess Bi concentration,buffered Bi2O3 layers,and Ta doping on the ferroelectricity of Bi3.25La0.75Ti3O12 Films Grown by chemical solution deposition |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 鐵電性質 、化學溶液鍍著法 |
| 外文關鍵詞: | chemical solution deposition, ferroelectricity |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究以化學溶液鍍著法生長Bi3.25La0.75Ti3O12(BLT)薄膜在不同過量百分比的鉍、Bi2O3緩衝層和添加不同計量比的鉭在退火溫度550-800度對其鐵電性之影響,同時添加鉭的部分又和射頻濺鍍法所長的互相比較。BLT薄膜在過量10 mol %有最佳鐵電性,而無Bi2O3緩衝層的BLT薄膜在550-800度為(117)而850度為c軸,當有Bi2O3在550-650度是顯著的(117)和(200)峰值而700則是c軸取向,除了Bi2O3緩衝層外,有機殘留物和在(001)BLT/Pt的低界面能是促使a-和c-軸生長的決定因素,在本實驗中塗有Bi2O3緩衝層採二階段退火可以製備最佳a-軸取向之BLT膜,此過程為第一次在550-650度而後在700-850度退火,a軸取向的BLT膜比任意或c-軸取向的BLT膜分別有較大的殘餘極化(2Pr)和較小的矯頑電場(2Ec)。這個結果可解釋沿a-軸有大的極化和Bi2O3緩衝層補償BLT膜在退火過程中鉍的損失,以CSD和sputter生長的BLT膜其殘餘極化(2Pr)隨添加鉭而減少,這個結果可被解釋由於鉭的添加而導致晶粒的變小。
Effects of excess Bi concentrations, buffered Bi2O3 layers, and Ta doping on the ferroelectricity of chemical-solution-deposited (CSD) Bi3.25La0.75Ti3O12 (BLT) films were studied as a function of annealing temperature in the range of 550-800℃. Meanwhile, Some Ta-doped BLT films were prepared using sputtered deposition for comparison. The BLT films with excess 10 mol % Bi showed the best ferroelectricity. The BLT films without buffered Bi2O3 layers showed a prominent (117) peak at 550-800℃ and c-axis-oriented growth at 850℃, while the BLT films with buffered Bi2O3 layers showed prominent (117) and (200) peaks at 550-650℃ and c-axis-oriented growth at 700℃. In addition to the buffered Bi2O3 layer, the hydrocarbon residue in the CSD BLT films and the lower interfacial energy of (001)BLT/Pt appear to be the crucial factors in enhancing the a- and c-axis-oriented growth of BLT films, respectively. In the present study, deposition of buffered Bi2O3 layers in conjunction with two-step annealing, i.e., first annealed at 550-650℃ and then annealed at 700-850℃, is a viable processing to fabricate well-crystallized BLT films with a-axis orientation. The BLT films with a-axis orientation showed a larger remanent polarization and a smaller coercive field than those with random or c-axis orientation, respectively. This result can be explained in terms of the large polarization along the a-axis orienation and buffered Bi2O3 layers which compensate the BLT films for Bi evaporation during annealing. For the CSD and sputtered BLT films the remanent polarization decreased with the doping concentration of Ta. This result can be explained in terms of the reduction of the grain size of the films due to Ta doping.
1. 毫微米通訊, 鐵電記憶體簡介, 第五卷第四期33.鐵電記憶體簡介.
2. R. A. Roy, K. F. Etzold, and J. J. Cuomo, Mat. Res. Soc. Symp. Proc. 200, 141(1990).
3. 工業材料, 107期, 84年11月.
4. J. F. Scott, and C. A. Paz. de. Araujo, “Ferroelectric memories”, Science, 246, 1400(1989).
5. M. H. Francombt, and S. Krishnaswany, J. Vac. Sci. Technol. A8, 1382(1990).
6. G. A. Racine, R. Luthier, and N. F. Derooj, in Microelectro Mechanical System, Fort Lauderdale, FL 1993(IEEE, New York, 1993), PP128-132.
7. K. Brooks, D. Damjanovic, A. Kholkin, I. Renney, N. Setter, P. Luginbuhl, G. A. Racine, N. F. Derooij, and A. Saaman, Integr Ferroelec. 8, 13(1995).
8. A. M. Glass, Phys. Rev. 172, 564(1968).
9. H. P. Beerman, Ferroelectric, 2, 123(1971).
10. D. W. Chapman, J. Vac. Sci. Technol. 9, 425(1972).
11. J. C. Webster, and F. Zernike, Ferroelectrics, 10, 249(1976).
12. G. C. Messenger, and F. N. Coppage, IEEE Trans. Nucl. Sci. NS-35,1461(1988).
13. S. K. Dey, and R Znleeg, Ferroelectric, 108, 37(1990).
14. C. A. Pazde. Araujo, L. D. Mcmillan, B. M. Melnick, J. D. Cucharo, and J. F. Scott, Ferroelectrics, 104, 241(1990).
15. K. Ramkumar, J. Lee, A. Safari, S. C. Danforth, Mat. Res. Soc. Symp. Proc. 200, 121(1990).
16. R. Ramesh, A. Inam, W. K. Chan, B. Wilkens, K. Myers, K. Remschnig, P. L. Hart, J. M. Taroscon, Science, Vol.251, 17 May 1991.
17. W. Y. Wu, J. Appl. Phys. 50, 4317(1979).
18. E. C. Subbarao, Phy. Rev. 122, 849(1961).
19. J. F. Scott, “Ferroelectric memories a atatus report” present at Government Industry Review of Ferroelectric memories Sept 14-15, 1998.
20. D. Bondarant, and Fred Gnadinger “Ferroelectric, 1988 for
nonvolatile Rams” IEEE Spectrum, V. 26. pp. 30-33, July 1989.
21. B. M. Melnick, C. A. Araujo, L. D. Mcmilan, D. A. Caver, and J. F. Scott, Ferroelectrics, 116(1991)
22. C. H. Peng, J. Chang, and S. B, Desu, in A. I. Kingon, E. R. Myers and Tuttle(eds), Mater. Res. Soc Symp. Proc. Ferroelectric Thin FilmsII, MRS, Pittsburgh. PA, 7(1992), P. 21.
23. K. Aoki, Y. Fukuda, and A. Nishimura, J. Appl. Phys. 32(1993), 4147.
24. G. R. Fox, and S. B. Krupanidhi, J. Mater. Res. 9(1994), 699
25. J. F. Chang, and S. B. Desu, J. Mater. Res. 9(1994), 915.
26. P. C. Fazan, Integr. Ferroelect. 4, 247(1994).
27. W. Kinney, Integr. Ferroelect. 4, 131(1994).
28. R. Ramesh, A. Inam, B. Wilkens, W. K. Chan, D.
L. Hart, K. Luther and J. M. Yarascon, Science, 252(1991), 944.
29. R. Remesh, J. Lee, T. Sands, and V. G. Keramidas, “Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O heterostructures on [001] Pt/SiO2/Si substrates using a bismuth titanate template layer.” Appl. Phys. Lett. 64(19), (1994)2511.
30. Arit, G. & Pertser, N. A. J. Appl. Phys. 70, 2283-2289(1991).
31. Artit, G. & Robels, U. Integ. Ferroelect. 3, 247-254(1993).
32. I. S. Zheluder, Physics of crystalline ielectrics (Plenum, New York,1971).
33. Plessner, K. W. Proc. Phys., Soc. B69, 1261-1269(1956).
34. Scott. J. F. and Araujo, C. A. Science, 246, 1400-1405(1989).
35. Duiker, H. H. Etal. J. Appl. Phys. 68, 5783-5789(1990).
36. Postnikov, V. S. Pavlov, V. S. Gvidnev, S. A. &Turkor, S. K. Sov. Phys. Solid. St.10, 1267-1270(1968).
37. Lohkamper, R. Neumann, H. & Arit G. J. Appl. Phys. 68, 4220-4227(1990).
38. I. K. Yoo, and S. B. Desu, Phys. Sol. (a)133. 565(1992).
39. B. Aurivillins. Ariki. Kemi. 1, 463, 499(1949); Ibid. 2, 519(1950).
40. C. A. Paz. De. Araujo, J. D. Cuchiaro, M. C. Scott, and L. D. Mcmillan, International publication No. Wo93/12542, (24 June 1993).
41. M. S. Jahn, D. W. Cooke, H. Sheinbery, J. L. Smitch, and D. P. Lianos, J. Mater, Res. 4, 759(1989).
42. Y. Tokura, H. Takagi, and S. Vchida, Nature, 337, 345(1989).
43. S. K. Dey, and R. Zuleeg, Ferroelectric, 108, 37(1990).
44. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo, “Lanthanum-substituted bismuth titanate for use in non-volatile memories.” Nature(London)401, 682
(1999).
45. O. Auciello, J. F. Scott, & R. Ramesh, “The physics of ferroelectric memories.” Phys. Today, 51, 22-27(1998).
46. C. A. Araujo, et al. “Fatigue-free ferroelectric capacitors with platinum electrodes.” Nature 374, 627-629(1995).
47. A. D. Rae, J. G. Thompson, and R. L. Withers, Acta Crystallogr., Sect. B: Struct. Sci. 48, 418 (1992).
48. Y. Noguchi, M. Miyayama, and T. Kudo, Phys. Rev. B 63,214102 (2001).
49. R. Dinu, M. Dinescu, J.D. Pedarnig, R.A. Gunasekaran, D. Bauerle, S. Bauer-Gogonea, and S. Bauer, Appl. Phys. A 69, 55 (1999).
50. W.C. Shin and S.G. Yoon, Appl. Phys. Lett. 79, 1519 (2001).
51. O. Auciello, & R. Ramesh, “Laser-ablation deposition and characterization of ferroelectric capacitors for nonvolatile memories.” MRS Bull. 21, 31-36(1996).
52. C. A. Araujo, et al. “Ferroelectric dielectric memory cell can switch at least giga cycles and has low fatigue-has high dielectric constant and low leakage current.” US Patent No. 5, 519, 234(1996).
53. R. Dat, J. K. Lee, O. Auciello, A. I. Kingon, “Pulsed laser ablation synthesis and characterization of layered Pt/SrBi2Ta2O9/Pt ferroelectric capacitors with practically no polarization fatigue.” Appl. Phys. Lett,
67, 572-574(1995).
54. T. Li, et al. “Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films.” Appl. Phys. Lett, 68, 616-618(1996).
55. K. Amanuma, T. Hase, & Y. Miyasak, “Preparation and ferroelectric properties of SrBi2Ta2O9 thin films.” Appl. Phys. Lett, 66, 221-223(1995).
56. S. E. Cummins, & L. E. Cross, “Crystal symmetry, optical properties, and ferroelectric polarization of Bi4Ti3O12 single crystals.” Appl. Phys. Lett, 10, 14-16(1967).
57. P. C. Joshi, & S. B. Krupanidhi, “Switching, fatigue, and retention in ferroelectric Bi4Ti3O12 thin films.” Appl. Phys. Lett, 62, 1928-1930(1993).
58. T. Kijima, M. Ushikubo, & H. Matsunaga, “New low temperature processing of metalorganic chemical vapor deposition- Bi4Ti3O12 thin films using BiOX buffer layer.” J. Appl. Phys. 38, 127-130(1999).
59. B. H. Park, et al. “Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12.” Appl. Phys. Lett, 74, 1907-1909(1999).
60. B. S. Kang, et al. “Different fatigue behaviors of SrBi2Ta2O9 and Bi3TiTaO9 films: role of perovskite layers.” Appl. Phys. Lett, 66, 239-241(1995).
61. Y. Noguchi, I. Miwa, Y. Goshima, M. Miyayama, “Defect control for large remanent polarization in bismuth titanate ferroelectrics -Doping effect of higher valent cations-.” Jpn. J. Appl. Phys. 39, 1259(2000).
62. 金屬工業34卷2期 中華民國89年3月, 45.
63. T. Choi, Y. S. Kim, C. W. Yang, & J. Lee, “Electrical properties of Bi3.25La0.75Ti3O12 thin films on Si for a metal-ferroelectric-insulator-semiconductor structure.” Appl. Phys. Lett., 79, 1516-1518(2001).
64. H. N. Lee, D. Hesse, “Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations.” Appl. Phys. Lett., 80, 1040-1042(2001).
65. T. Watanabe, H. Funakubo, M. Osada, Y. Noguchi, M. Miyayama, “Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition.” Appl. Phys. Lett., 80, 100-102(2002).
66. J.T. Dawley, R. Radspinner, B.J.J. Zelinski, and D.R. Uhlmann, J. Sol-Gel Sci. Technol. 20, 85 (2001).
67. Lawrence H. Van Vlack, Materials science for engineers, P.273
68. 王明俊, 射頻濺鍍法生長鉍鑭鈦薄膜及其鐵電性質研究. 國立成功大學材料科學與工程研究所碩士論文. 中華民國九十一年六月
69. D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, “Ferroelectric properties of Bi3.25La0.75Ti3O12 thin films prepared by chemical solution deposition.” J. Appl. Phys. 88, 5941(2000).
70. D. Dimos, H. N. Al-Shareef, W. L. Warren, and B. A. Tuttle, “Photoinduced changes in the fatigue behavior of SrBi2Ta2O9 and Pb(Zr,Ti)O3 thin films.” J. Appl. Phys. 80, 1682(1996).
71. Y. Noguchi, M. Miyayama, “Large remanent polarization of V-doped Bi4Ti3O12.” Appl. Phys. Lett., 78, 1903(2001).
72. C. C. Leu, M. C. Yang, C. T. Hu, C. H. Chien, M. J. Yang, and T. Y. Huang, “Effect of tantalum adhension layer on the properties of SrBi2Ta2O9 ferroelectric thin films.” Appl. Phys. Lett., 79, 3833(2001).
73. D. Bao, T.W. Chiu, N. Wakiya, K. Shinozaki, and N. Mizutani, J. Appl. Phys. 93, 497 (2003)
74. U. Chon, H. M. Jang, S. H. Lee, and G. C. YI, “Formation and characteristic of highly c-axis-oriented Bi3.25La0.75Ti3O12 thin films on SiO2/Si(100) and Pt/Ti/SiO2/Si(100) substrates.” J. Mater. Res. 16, 3124(2001).
75. D. Wu, A. Li, T. Zhu, Z. Li, Z. Liu, and N. Ming, J. Mater. Res. 16, 1325(2001).
76. Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi, and Z. Hiroi, “Crystal and electronic structures of Bi4-XLaXTi3O12 ferroelectric materials.” Appl. Phys. Lett., 79, 2791(2001).
77. 汪建民, 材料分析 (中國材料科學學會, 新竹市, 民國87)
78. L.R. doolittle, Nucl. Instr. Meth. B9 (1985) 334.
79. D. Wu, A. Li, H. Ling, T. Yu, Z. Liu, and N. Ming, “Room temperature aging behavior of thermally imprinted Pt/SrBi2Ta2O9/Pt ferroelectric thin film capacitors.” J. Appl. Phys. 90, 4130(2001).
80. X. Wang, and H. Ishiwara, Appl. Phys. Lett. 82, 2479 (2003).
81. W.T. Lin, T.W. Chiu, H.H. Yu, J.L. Lin, and M.S. Lin, J. Vac. Sci. Technol. A 21, 787 (2003).
82. D. Wu, A. Li, T. Zhu, Z. Liu, and N. Ming, J. Appl. Phys. 88, 5941 (2000).
83. U. Chon, G.C. Yi, and H.M. Jang, Appl. Phys. Lett. 78, 658 (2001).
84. X. Du and I. W. Chen, J. Am. Ceram. Soc., 81 3253 (1998)
85. R. C. Buchanan, R. Palan, A. Ghaffari, K. Tran, J. E. Sundeen, J. Eur. Ceram. Soc., 21 1577 (2001).