| 研究生: |
王慧蓮 Wang, Hui-Lien |
|---|---|
| 論文名稱: |
聯合方程式架構中參數之貝氏與非貝氏估計法 Bayesian and Non-Bayesian Estimators in the Simultaneous Equation Model |
| 指導教授: |
陳重弘
Chen, Chong-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 馬可夫鏈蒙地卡羅法 、雙重k 級估計法 、聯立方程式模型 、poly-t 分配 |
| 外文關鍵詞: | double-k class estimator, simultaneous equation model, Markov Chain Monte Carlo, ploy-t distribution |
| 相關次數: | 點閱:123 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於聯立方程式模型其係數參數的估計問題, 在利用雙重 k 級估計法時, 必須先確立(k1; k2) 值。關於 (k1; k2) 的最適值, 我們根據Gao & Lahiri (2002) 的概念, 先給定k1 為k 級估計法中最適的k 值, 並在此條件下找出最佳的k2 值; 另外則是同時尋找(k1; k2) 的最適值。我們利用Matlab 計算出其值。另一方面, 針對貝氏估計法, 其係數參數之貝氏解為事後分配poly-t 的期望值, 利用馬可夫鏈蒙地卡羅法可得其數值解。最後我們利用Matlab 以模擬方式來比較這些估計量, 雖然同時尋找(k1; k2) 之最適值其均方差最小但是其偏差項卻不是最小的。
The problem of using the double-k estimator to estimate the parameters in the simultaneous equation model is the choice of (k1; k2). Using the concept from Gao & Lahiri(2002), we find the optimal value of k2 under the given optimal value of k1. Then we use Matlab to find the optimal value of (k1; k2) simultaneously. On the other hand, the Bayesian estimator which is the expectation of the ploy-t distribution may be obtained by using Markov Chain Monte Carlo method. Finally, we compare these estimators by using simulation. We find that the estimator using optimal value of (k1; k2) simultaneously has the minimal value of mean square error, even though it has larger bias than others.
1. Bauwens,L. and Richard,J.F., A 1-1 poly-t random variable generator with application to monte carlo integration. Journal of Econometrics, Vol.29, page 19-46, 1985.
2. Borse,G.J., Numerical methods with MATLAB: a resource for scientists and engineers, PWS, Boston, 1997.
3. Carlson,B.C., Special Functions of Applied Mathematics, Academic Press, New York, 1977.
4. Dickey,James M., Multiple hypergeometric functions: probabilistic interpretations and statistical uses. Journal of the American Statistical Association, Vol.78, page 628-637, 1983.
5. Dickey,J.M., Jiang,T.J. and Kadane,J.B., Bayesian Methods for Censored Categorical Data. Journal of the American Statistical Association, Vol.82, page 773-781, 1987.
6. Dickey,J.M., Jiang,T.J. and Kadane,J.B., Computation of Carlson’s Multiple Hypergeometric Function R for Bayesian Applications.Journal of Computational and Graphical Statistics, Vol.1,page 231-251, 1992.
7. Dwivedi,T.D. and Srivastava,V.K., Exact finite sample properties
of double k-class estimators in simultaneous equations. Journal of Econometrics, Vol.25, page263-283, 1984.
8. Gao,Chuanming and Lahiri,Kajal, A note on the double k-class estimator in simultaneous equations. Journal of Econometrics,Vol.108, page 101-111, 2002
9. Griliches,Z. and Intriligator,M.D., Handbook of econometrics,North-Holland, Amsterdam, 1983.
10. Nagar,A.L., The bias and moment matrix of the general k-class estimators of the paramweters in simultaneous equations. Econometrica, Vol.27, No.4, page 575-595, 1959.
11. Nagar,A.L., Double k-class estimatos of parameters in simultaneous
equations and their small sample properties. International Economic Review, Vol.3, No.2, page 168-188, 1962.
12. Richard,J.F. and Tompa,H., On the evaluation of poly-t density functions. Journal of Econometrics, Vol.12, page 335-351, 1980.
13. Robert,C.P. and Casella,G., Monte Carlo Statistical Methods, Springer, New York, 2004.
14. Sawa,T., Finite-sample properties of the k-class estimators. Econometrica,
Vol.40, No,4, page 653-680, 1972.
15. Wendy,L.M. and Angel,R.M., Computational Statistics Handbook with Matlab, Chapman&Hall/CRC, New York, 2002.
16. Zellner,A., The finite sample properties of simultaneous equations estimates andestimators: Bayesian and non-Bayesian approaches.
Journal of Econometrics, Vol.83, page 185-212, 1998.
17. 石齊平和郭照榮, 當代計量經濟學, 三民總經銷, 1985.