| 研究生: |
林雨澄 Lin, Yu-Cheng |
|---|---|
| 論文名稱: |
應用滑動基礎之足尺三層樓鋼構架耐震性能評估 Seismic performance evaluation of the 3-story steel moment frame equipped with base slide system |
| 指導教授: |
鍾育霖
Chung, Yu-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 摩擦係數 、鑄鐵 、砂漿 、滑動式基礎 、振動台實驗 、OpenSees |
| 外文關鍵詞: | Friction Coefficient, Cast Iron, Mortar, Sliding Base, Shaing Table Test, OpenSees |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
建築物底層結構的破壞為常見的震損型態,基礎隔震有別於傳統透過增加結構構件之強度、勁度及韌性來提升耐震性能,係透過隔震裝置降低上部結構受到的地震力,有效減少建築物震損。目前常見隔震裝置之建造與維護成本較高,數量占大多數的中低層建築物多難以負擔此花費,相對的滑動式基礎則有建置及維護成本較低、修復容易等優勢,由過去研究及實驗可發現,以常見工程材料如鑄鐵及砂漿作為滑動式基礎之摩擦介面,其表現出的摩擦係數低且摩擦行為穩定,並且證實滑動式基礎能有效提升結構耐震能力。本研究以鑄鐵-砂漿作為滑動基礎之摩擦介面,首先以靜態摩擦實驗比較不同鑄鐵表面性質對於摩擦行為之影響;再透過實尺寸振動台實驗評估滑動式基礎之性能及動態行為,並與基礎固定試體比較結構物反應;最後以OpenSees模擬振動台實驗使用之試體,驗證模型可靠度後再提升加載強度以分析滑動式基礎之隔震效益並提出設計之建議。
本研究所得之重點結論如下:
1. 由靜態摩擦實驗中得知,使用不同的加工方式改變鑄鐵表面性質會影響石墨的分布狀態,導致摩擦後石墨的析出量不同,進而影響鑄鐵與砂漿間之摩擦係數。
2. 振動台實驗測得之摩擦係數約為0.12,低於往年振動台實驗之摩擦係數,因此即使加載強度降低,試體仍有明顯的滑動行為,結構物擺動造成的抬升行為則明顯減緩。
3. 由振動台實驗得知,相較於固定式基礎,滑動式基礎能降低結構物反應,在JMA Kobe 30%的加載階段時,滑動式基礎其頂樓水平向加速度降低約34%,1樓層間變位角則降低約一半,有效發揮隔震效果。
An experimental study was conducted to evaluate the seismic behavior of a structure equipped with a sliding base system using cast iron and mortar at the interface. The static friction test showed that using different processing methods to change the surface condition of cast iron would affect the amount of graphite precipitation and lead to the variation of friction coefficient. For the surface with grinding treatment, the friction behavior was the most stable and the static and kinetic friction coefficients are about 0.17 and 0.16. The surface treatment was applied on the cast irons of the shaking table experiment. The test results indicated that friction coefficient is about 0.12. The dynamic behavior of the 3-story frame is mainly sliding, and there is no notable rocking occurred in the tests. The maximum horizontal acceleration and the story drift ratio of the sliding base are significantly lower than that of the base fixed specimen. Specimen with sliding bases remained elastic while the beam end stress value of the base fixed specimen has exceeded the yielding strain. The seismic resistant capacity was significantly improved when the frame equipped with the sliding base system. A serious of numerical analysis to simulate the seismic response of the test specimens were conducted. The numerical model is verified to be highly reliable comparing it with the shaking table experiment results. In the subsequent analysis of high intensity inputs, the sliding base specimen can still reduce the horizontal acceleration and the story drift ratio, and effectively reduce the damage to the structure caused by the earthquake.
[1] J. A. Calantarients, Improvements in and Connected with Building and Other Works, Construction and Appurtenances to Resist the Action of Earthquakes and the Like, 1909.
[2] A. S. Arya, “Sliding concept for mitigation of earthquake disaster to masonry buildings,” Proceedings of 8th world conference on earthquake engineering. San Francisco., vol. 5, pp. 951-958, 1984.
[3] L. Li, “Base isolation measure for aseismic buildings in China,” Proceedings of 8th world conference on earthquake engineering. San Francisco, Calif, vol. 6, pp. 791-798, 1984.
[4] Ryuta Enokida, Takuya Nagae, Masahiro Ikenaga, Michitaka Inami, Masayoshi Nakashima, “Application of Graphite Lubrication For Column Base in Free Standing Steel Structure,” J.Struct. Constr. Eng., AIJ, Vol. 78 No. 685, pp. 435-444, 2013.
[5] K. Kajiwara, Y. Tosauchi, E. Sato, K.Fukuyama, T.Inoue, H.Shiohara, “2015 Three-dimensional Shaking Table Test of a 10-story Reinforced Concrete Building on the E-Defense Part 1: Overview and Specimen Design of the Base Slip and Base Fixed Tests,” 16th World Conference on Earthquake Engineering. Santiago, Chile, 9-13 January., no. 4012, 2017.
[6] Sato, E., Tosauchi, Y., Fukuyama, K., Inoue, T., Kajiwara, K., Shiohara, H., Kabeyasawa, T., Nagae, T., Fukuyama, H., Kabeyasawa, T. and Mukai, T., “2015 Three- dimensional Shaking Table Test of a 10-story Reinforced Concrete Building on the E-Defense; Part 2: Specimen Fabrication and Construction, Test Procedure, and Instrumentation Program,” 16th World Conference on Earthquake Engineering. Santiago, Chile, 9-13 January., no. 4007, 2017..
[7] Tosauchi, Y., Sato, E., Fukuyama, K., Inoue, T., Kajiwara, K., Shiohara, H., Kabeyasawa, T., Nagae, T., Fukuyama, H., Kabeyasawa, T. and Mukai, T., “2015 Three- dimensional Shaking Table Test of a 10-story Reinforced Concrete Building on the E-Defense; Part 3: Base Slip and Base Fixed Test Results,” 16th World Conference on Earthquake Engineering. Santiago, Chile, 9-13 January., no. 4016, 2017.
[8] 郭冠廷, 應用滑動式基礎之結構耐震行為研究, 國立成功大學, 2019.
[9] 顧晁語, 砂漿性質對於應用滑動式基礎結構之耐震性能影響評估, 國立成功大學, 2020.
[10] 楊詠翔, 滑動式基礎之介面摩擦行為探討以及結構動態行為評估, 國立成功大學, 2021.
[11] Fazard Naemin, James M. Kelly, Design of Seismic Isolated Structures: From Theory to Practice, John Wiley & Sons, Inc., 1999.
[12] Peng-Cheng Zang, Takuya Nagae, Jason McCormick, Masahiro Ikenaga, Mika Katsuo, Masayoshi Nakashima, “Friction-Based Sliding Between Steel and Steel, Steel and Concrete, and Wood and Stone,” 2008.
[13] Ryuta Enokida, Masahiro Ikenaga, Takuya Nagae, Masayoshi Nakashima, “Kinematic Friction and Seismic Responses of Free Standing Steel Structure on Mortar Base,” J. Struct. Constr. Eng., AIJ, Vol. 76 No. 661, pp. 527-534, 2011.
[14] R. Stribeck, “Kugellager für beliebige Belastungen,” Zeitschrift des Vereins Deutscher Ingenieure, 45, 1901.
[15] Junji Sugishita, Shonoshin Fujiyoshi, "The effect of cast iron graphites on friction and wear performance I: Graphite film formation on grey cast iron surfaces," in Wear, vol 66, Issue 2, pp. 209-221, 1981.
[16] 陶其駿,厲娓娓, 隔震建築應用與使用管理通俗化手冊之研擬, 內政部建築研究所, 2006.
[17] Tosauchi, Y., Sato, E., Fukuyama, K., Inoue, T., Kajiwara, K., Shiohara, H., Kabeyasawa, T., Nagae, T., Fukuyama, H., Kabeyasawa, T. and Mukai, T., “THREE- DIMENSIONAL SHAKING TABLE TEST OF A TEN-STORY RC FRAME (2015) Test methods and the responses in case of sliding bases,” J. Struct. Constr. Eng. AIJ, vol. 83, no. 750, pp. 1139-1149, 2018.
[18] E. Takeuchi, "The effect of cast iron graphites on friction and wear performance I: Graphite film formation on grey cast iron surfaces," in Wear, vol. 11, Issue 3, pp. 201-212, 1968.
[19] Enokida, R., & Nagae, T., “Seismic Damage Reduction of a Structural System based on Nontraditional Sliding Interfaces with Graphite Lubrication,” Journal of Earthquake Engineering., vol. 22, no. 4, pp. 666-686, 2018.
[20] 葉錦勳,黃李暉, “地震早期損失評估在應變時之應用與檢討,” 國家地震研究中心簡訊97, pp. 5-6, 2016.
[21] “OpenSeesWiki,” Pacific Earthquake Engineering (PEER) Center, [線上]. Available: https://opensees.berkeley.edu/wiki/index.php/Main_Page. [存取日期: 2 July 2021].
[22] Yuan Lu, Marios Panagiotou, Ioannis Koutromanos, “Three-Dimensional Beam-Truss Model for Reinforced-Concrete Walls and Slabs Subjected to Cyclic Static or Dynamic Loading,” PEER Report 2014/18, Pacific Earthquake Engineering Research Center Headquarters at the University of California, Berkeley, 2014.
校內:2027-08-09公開