| 研究生: |
王偉銘 Wang, Wei-Ming |
|---|---|
| 論文名稱: |
多組平均數比較之異質變異數問題 Heteroscedasticity Problems in Comparison of Several Means |
| 指導教授: |
温敏杰
Wen, Miin-Jye |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 異質變異數 、一階段抽樣程序 、平均數分析 、聯合信賴區間 |
| 外文關鍵詞: | heteroscedasticity, single-stage sampling procedure, analysis of means, simultaneous confidence intervals |
| 相關次數: | 點閱:101 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
存在異質變異數的多組平均數比較,在統計學上是長期存在的問題。過去研究顯示,檢定統計量的分布受未知變異數的影響很大,並且在存在異質變異數時會不穩健。Bishop 和 Dudewicz (1978) 基於 Stein (1945) 的兩階段抽樣程序,提出了在變異數未知且不相等時的精確檢定量分配的方法,並在許多後續研究中用於解決各種多重比較問題。但是,兩階段抽樣程序是研究設計導向,需要在第二階段增加額外的樣本,缺乏實用性。在本論文中,我們分別應用了 Chen 和 Lam (1989)、Chen 和 Chen (1998) 以及 Chen (2001) 的單階段抽樣程序,來處理樣本數相等和不相等的兩種異質變異數下的平均數分析以及與單一控制組的多重比較問題。為了驗證此程序的品質,進行了整體型I誤差率的模擬,並提供了多個實例分析來說明程序如何使用。創建R Shiny的網路介面,供使用者可以更輕易的使用這些程序。
Comparison of several means in the presence of heteroscedasticity has been a long-standing problem in statistics. According to studies, the distribution of test statistics is highly influenced by unknown variances and is not robust in the presence of heteroscedastic variances. Bishop and Dudewicz (1978) proposed an exact analysis of variance when the variances are unknown and unequal, based on a two-stage sampling process described by Stein (1945). The approach has been used in a number of follow-up research to solve various multiple comparison problems. However, the two-stage sampling procedure is design-oriented which requires additional samples at the second stage, and it is inconvenient for the practice. In this thesis, we applied Chen and Lam's (1989), Chen and Chen's (1998) and Chen's (2001) single-stage sampling procedure, respectively, to analysis of means and multiple comparison with a control under heteroscedasticity with equal and unequal sample sizes. In order to validate the quality of the procedures, simulations of the family-wise error rate were undertaken, and various numerical examples were supplied to illustrate the procedures. R Shiny was utilized in the creation of an interface so that we can make the procedures more user-friendly.
Adler, I., and Kliesch, U. (1990). Comparison of single and multiple treatment regimens in the mouse bone marrow micronucleus assay for hydroquinone (HQ) and cyclophosphamide (CP). Mutation Research, 234(3-4), 115-123.
Bishop, T. A. (1976). Heteroscedastic ANOVA, MANOVA, and multiple-comparisons. Unpublished Ph.D. thesis, The Ohio State University.
Bishop, T. A. (1979). Some results on simultaneous inference for analysis of variance with unequal variances. Technometrics, 21(3), 337-340.
Bishop, T. A., and Dudewicz, E. J. (1978). Exact analysis of variance with unequal variances: test procedures and tables. Technometrics, 20(4), 419-430.
Brown, M., and Forsythe, A. (1974). Small sample behavior of some statistics which test the equality of several means. Technometrics, 16(1), 129-132.
Casella, G., and Berger, R. L. (2002). Statistical inference}. Section 9.3: Methods of Evaluating Interval Estimation, page 443. 2nd Edition, Duxbury, CA, USA.
Castillo-Cuenca, J. C., Martínez-Moreno, Á., Diaz-Cao, J. M., Entrena-García, A., Fraga, J., Arias, P. C., Almería, S., and García-Bocanegra, I. (2021). Seroprevalence of Toxoplasma gondii and associated risk factors in domestic pigs raised from Cuba. Parasitology Research, 120(8), 2897-2903.
Chen, H. J., and Lam, K. (1989). Single-stage interval estimation of the largest normal mean under heteroscedasnoty. Communications in Statistics-Theory and Methods, 18(10), 3703-3718.
Chen, H. J., and Wen, M. J. (2006). Optimal confidence interval for the largest normal mean under heteroscedasticity. Computational statistics and data analysis, 51(2), 982-1001.
Chen, H. J., Wen, M. J., and Chuang, C. J. (2011). On testing the equivalence of treatments using the measure of range. Computational Statistics and Data Analysis, 55, 603–614.
Chen, H. J., Wen, M. J., and Wang, A. M. (2009). On testing the bioequivalence of several treatments using the measure of distance. Statistics, 43(5), 513–530.
Chen, H. J., and Wu, S. F. (2012). A confidence region for the largest and the smallest means under heteroscedasticity. Computational Statistics and Data Analysis, 56(6), 1692-1702.
Chen, S. Y. (2001). One-stage and two-stage statistical inference under heteroscedasticity. Communications in Statistics-Simulation and Computation, 30(4), 991-1009.
Chen, S. Y., and Chen, H. J. (1998). Single-stage analysis of variance under heteroscedasticity. Communications in Statistics-Simulation and Computation, 27(3), 641-666.
Chen, S. Y., Chen, H. J., and Chang, H. F. (2004). A one-stage procedure for testing homogeneity of means against an ordered alternative under unequal variances. Communications in Statistics-Simulation and Computation, 33(1), 49-67.
Dag, O., Dolgun, A., Konar, N. M., Weerahandi, S., Ananda, M., and Dag, M. O.
(2021). Package `onewaytests'. Available at:https://cran.r-project.org/
web/packages/onewaytests/index.html. R package version, 2.6.
Djira, G., Hasler, M., Gerhard, D., and Schaarschmidt, F. (2020). mratios: ratios of
coefficients in the general linear model. https://carn.r-project.org/package=
mratios. R package version, 1.4.2.
Dudewicz, E. J., and Dalal, S. R. (1983). Multiple-comparisons with a control when variances are unknown and unequal. American Journal of Mathematical and Management Sciences, 3(4), 275-295.
Dudewicz, E. J., and Mishra, S. (1988). Modern mathematical statistics, pp. 500-501. John Wiley, NY.
Dudewicz, E. J., and Nelson, P. R. (2003). Heteroscedastic analysis of means (HANOM). American Journal of Mathematical and Management Sciences, 23(1-2), 143-181.
Dudewicz, E. J., Ramberg, J. S., and Chen, H. J. (1975). New tables for multiple comparisons with a control (unknown variances). Biometrische Zeitschrift, 17(1), 13-26.
Dudewicz, E. J., and Van Der Meulen, E. C. (1983). Entropy-based statistical inference, ii: selection-of-the-best/complete ranking for continuous distributions on (0, 1), with applications to random number generators. Statistics and Risk Modeling, 1(2), 131–146.
Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association, 50(272), 1096-1121.
Feir-Walsh, B. J., and Toothaker, L. E. (1974). An empirical comparison of the ANOVA F-test, normal scores test and Kruskal-Wallis test under violation of assumptions. Educational and Psychological Measurement, 34(4), 789-799.
Games, P. A., and Howell, J. F. (1976). Pairwise multiple comparison procedures with unequal n’s and/or variances: a Monte Carlo study. Journal of Educational Statistics, 1(2), 113-125.
Guenther, W. C. (1969). Shortest confidence intervals. The American Statistician, 23(1), 22-25.
Hasler, M. (2016). Heteroscedasticity: multiple degrees of freedom vs. sandwich estimation. Statistical Papers, 57(1), 55-68.
Hasler, M. (2019). SimComp: simultaneous comparisons for multiple endpoints. http://CRAN.R-project.org/package=SimComp, R package version 3.3.
Hasler, M., and Hothorn, L. A. (2008). Multiple contrast tests in the presence of heteroscedasticity. Biometrical Journal, 50(5), 793-800.
Horn, M., and Dunnett, C. W. (2004). Power and sample size comparisons of stepwise FWE and FDR controlling test procedures in the normal many-one case. Lecture Notes-Monograph, Series 47, 48-64.
Hsu, J. (1996). Multiple comparisons: theory and methods CRC Press, NY.
Juneau, P. (2003). Using SAS to perform a single-stage multiple comparison procedure for all pair-wise comparisons in a one-way layout with unequal variances. In Proceedings of the PharmaSUG 2003 Annual Conference, May 4–7, 2003, Miami, Florida, U.S.A.
Kiani, M., Panaretos, J., and Psarakis, S. (2008). A new procedure to monitor the mean of a quality characteristic. Communications in Statistics—Simulation and Computation, 37(9), 1870-1880.
Knief, U., and Forstmeier, W. (2021). Violating the normality assumption may be the
lesser of two evils. Behavior Research Methods. doi:https://doi.org/10.3758/
s13428-021-01587-5.
Krutchkoff, R. G. (1988). One—way fixed effects analysis of variance when the error variances may be unequal. Journal of Statistical Computation and Simulation, 30(4), 259-271.
Lam, K. (1987). Subset selection of normal populations under heteroscedasticity. Presented at the second International Advanced Seminar/Workshop on Inference Procedures Associated with statistical Ranking and Selection, August 9-15, 1987, Sydney, Australia.
Lam, K. (1992). Subset selection of normal populations under heteroscedasticity. In proceedings and discussions of the second international conference on inference procedures associated with statistical ranking and selection on The frontiers of modern statistical inference procedures, II}, Sydney, Australia.
Li, X., Tian, L., Wang, J., and Muindi, J. R. (2012). Comparison of quantiles for several normal populations. Computational Statistics and Data Analysis, 56(6), 2129-2138.
Lopez-Mejia, M., and Roldan-Valadez, E. (2016). Comparisons of apparent diffusion coefficient values in penumbra, infarct, and normal brain regions in acute ischemic stroke: Confirmatory data using bootstrap confidence intervals, analysis of variance, and analysis of means. Journal of Stroke and Cerebrovascular Diseases, 25(3), 515-522.
Mendeş, M., and Yiğit, S. (2013). Comparison of ANOVA-$F$ and ANOM tests with regard to type I error rate and test power. Journal of Statistical Computation and Simulation, 83(11), 2093-2104.
Miller, R. G., Jr. (1981). Simultaneous Statistical Inference, 2nd Edition. Springer, New York.
Nelson, P. R. (1982). Exact critical points for the analysis of means. Communications in Statistics: Theory and Methods, 11(6), 699-709.
Nelson, P. R. (1983). A comparison of sample sizes for the analysis of means and the analysis of variance. Journal of Quality Technology, 15(1), 33-39.
Nelson, P. R. (1991). Numerical evaluation of multivariate normal integrals with correlations ρ ℓj=-α ℓαj. The Frontiers of Statistical Scientific Theory and Industrial Applications}, Vol. II, 97-114.
Nelson, P. R., and Dudewicz, E. J. (2002). Exact analysis of means with unequal variances. Technometrics, 44(2), 152-160.
Nelson, P. R., Wludyka, P. S., and Copeland, K. A. (2005). The analysis of means: a graphical method for comparing means, rates, and proportions. Society for Industrial and Applied Mathematics, pp.25.
Ott, E. R. (1967). Analysis of means - a graphical procedure. Industrial Quality Control, 24(2), 101-109.
Pallmann P. (2017). Package`ANOM’. Available at:http://CRAN.R-project.org/
package=ANOM. R package version 0.4.
Pallmann, P., and Hothorn, L. A. (2016). Analysis of means: a generalized approach using R. Journal of Applied Statistics, 43(8), 1541-1560.
Paulson, E. (1952). On the comparison of several experimental categories with a control. The Annals of Mathematical Statistics, 23(2), 239-246.
Stanciu, D., and Chis, A. (2021). A study of cyberstander reactions under community-related influence: when gender complicates matters. Computers in human behavior, 115, 106589. doi: https://doi.org/10.1016/j.chb.2020.106589.
Stein, C. (1945). A two-sample test for a linear hypothesis whose power is independent of the variance. The Annals of Mathematical Statistics, 16(3), 243-258.
Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. Biometrics bulletin, 2(6), 110-114.
Tamhane, A. C. (1977). Multiple comparisons in model {I} one-way ANOVA with unequal variances. Communications in Statistics-Theory and Methods, 6(1), 15-32.
Wang, W. M., Wen, C. C., Das, R., and Wen, M. J. (2022). A modified single-stage sampling procedure for heteroscedasticity analysis of means with unbalanced design, to appear in Communications in Statistics-Simulation and Computation. doi:https://doi.org/10.1080/03610918.2022.2074456.
Wang, Y., Pham, T., Nguyen, D., Kim, E. S., Chen, Y. H., Kromrey, J., Yi, Z., and Yin, Y. (2018). Evaluating the Efficacy of Conditional Analysis of Variance under Heterogeneity and Non-Normality. Journal of Modern Applied Statistical Methods, 17(2), eP2701. doi: 10.22237/jmasm/1555340224.
Weerahandi, S. (1987). Testing regression equality with unequal variances. Journal of the Econometric Society, 1211-1215.
Weerahandi, S. (2004). Generalized inference in repeated measures: Exact methods in MANOVA and mixed models. John Wiley & Sons, pp.43.
Weerahandi, S., and Krishnamoorthy, K. (2019). A note reconciling ANOVA tests under unequal error variances. Communications in Statistics-Theory and Methods, 48(3), 689-693.
Welch, B. L. (1938). The significance of the difference between two means when the population variances are unequal. Biometrika, 29, 350-362.
Wen, M. J., and Chen, H. J. (1994). Single-stage multiple comparison procedures under heteroscedasticity. American Journal of Mathematical and Management Sciences, 14(1-2), 1-48.
Wen, M. J., Chen, S. Y., and Chen, H. J. (2007). On testing a subset of regression parameters under heteroskedasticity. Computational Statistics and Data Analysis, 51(12), 5958–5976.
Wen, M. J., Huang, L. C, and Zhong, J. (2017). Single-stage sampling procedure of the t best populations under heteroscedasticity. Communications in Statistics-Theory and Methods, 46(18), 9265-9273.
Wen, M. J., Wen, C. C., and Wang, W. M. (2022). Single-stage sampling procedure for heteroscedasticity in multiple comparisons with a control, to appear in Communications in Statistics-Simulation and Computation}. doi: https://doi.org/10.1080/03610918.2022.2053863.
Westfall, P. H. (1997). Multiple testing of general contrasts using logical constraints and correlations. Journal of the American Statistical Association, 92(437), 299-306.
Wludyka, P. S., and Nelson, P. R. (1997). An analysis-of-means-type test for variances from normal populations. Technometrics, 39(3), 274-285.
Wu, S. F., and Chen, H. J. (1998). Multiple comparisons with the average for normal distributions. American Journal of Mathematical and Management Sciences, 18(1-2), 193-218.