| 研究生: |
黃婉毓 Huang, Wan-Yu |
|---|---|
| 論文名稱: |
探討利用離心力製備DNA奈米束陣列 Generation of Aligned and Ordered DNA Nanostrand Array by Centrifugal Force |
| 指導教授: |
莊怡哲
Juang, Yi- Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | DNA奈米束 、離心力 、分子梳 |
| 外文關鍵詞: | molecular combing, DNA nanostrands, centrifugal force |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在製備大面積一微奈米結構的技術中,使用DNA溶液進行圖案式分子梳是一個相當簡單、快速且便宜的方法,透過這個方法可以得到相對大面積、整齊排列的DNA奈米束陣列。以往的研究中均以手動操作的方式拉伸DNA奈米束,人為的因素可能影響製備的結果,因此本研究使用可控制轉速的旋轉塗佈機,並藉以不同尺寸、形狀的流道輔助,嘗試在具有微孔洞與微柱陣列的基板上製備DNA奈米束陣列。由實驗結果得知,使用開放的微孔洞陣列基板拉伸DNA奈米束,雖然無法控制其分佈範圍與方向性,但以離心力的方式所拉伸得到的DNA奈米束長度較以手動操作的方式拉伸來得長。在使用流道輔助製備DNA奈米束陣列時,以密閉式流道搭配微孔洞陣列基板進行DNA奈米束拉伸,可以成功製備出大面積、方向單一的DNA奈米束陣列,而使用兩端開口流道作為輔助時,則會在流道末端產生一個沒有DNA奈米束分佈,或是DNA奈米束分佈雜亂的空白區域。此外,以密閉式流道搭配微柱陣列基板進行拉伸時,若僅填充溶液於微柱頂部的區域,可拉伸出若干長DNA奈米束;若將微柱間隙填滿溶液,則得到DNA溶液所形成的圓點陣列。
Among the techniques for fabrication of 1-D micro/nanostructures on a large area, patterned molecular combing is a relatively simple, fast and low cost method. By utilizing this method, the aligned and ordered DNA nanostrand array can be generated. This method has been operated manually, which could affect the final results due to uncontrollable factors. In this study, we intend to use the spin coater and the cover plate having the channel with different dimensions and geometric shapes to generate DNA nanostrands on microwell and/or micropillar array. The results showed that, by applying the centrifugal force, longer DNA nanostrands were generated on the polydimethyl siloxane (PDMS) stamp without cover plate compared to those by manual operation. However, the distribution of these DNA nanostrands is random and they are not well aligned. When using the PDMS stamp with microwell array and cover plate with polygon-shaped reservoir and capillary valve, the aligned and ordered DNA nanostrands were generated. For using the PDMS stamp with micropillar array, either the DNA nanostrands were generated sparsely on the substrate or DNA nanodots on the top of micropillars.
1. Feynman, R., There's plenty of room at the bottom, 1959. American Physical Society EaS California Institute of Technology, Pasadena., 1959.
2. Wanekaya, A.K., et al., Nanowire-based electrochemical biosensors. Electroanalysis, 2006. 18(6): p. 533-550.
3. Richter, J., Metallization of DNA. Physica E-Low-Dimensional Systems & Nanostructures, 2003. 16(2): p. 157-173.
4. 楊日昌, 台灣奈米科技:從2004到嚮往的未來. 工業技術研究院奈米科技研發中心, 2003.
5. Guan, J.J., B. Yu, and L.J. Lee, Forming highly ordered arrays of functionalized polymer nanowires by dewetting on micropillars. Advanced Materials, 2007. 19(9): p. 1212-+.
6. Guan, J.J. and J. Lee, Generating highly ordered DNA nanostrand arrays. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(51): p. 18321-18325.
7. Craig Freudenrich, P.D. HowStuffWorks - How does the DNA. 2007 2011.
8. 隋安莉, 奈米科技與DNA感應器. 科學發展, 2002(359): p. 62-67.
9. Nanoscale origami from DNA. PHYSorg.com., 2009.
10. Shivashankar, G.V. and A. Libchaber, Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer. Applied Physics Letters, 1997. 71(25): p. 3727-3729.
11. Kwak, K.J., H. Kudo, and M. Fujihira, Imaging stretched single DNA molecules by pulsed-force-mode atomic force microscopy. Ultramicroscopy, 2003. 97(1-4): p. 249-255.
12. Morii, T., et al., An AFM study of the elasticity of DNA molecules. Thin Solid Films, 2004. 464: p. 456-458.
13. Hirano, K., et al., Manipulation of single coiled DNA molecules by laser clustering of microparticles. Applied Physics Letters, 2002. 80(3): p. 515-517.
14. Chen, Y.F., G. Blab, and J.C. Meiners, Stretching sub-micron DNA fragments with optical tweezers. Biophysical Journal, 2007: p. 166A-166A.
15. Smith, S.B., L. Finzi, and C. Bustamante, DIRECT MECHANICAL MEASUREMENTS OF THE ELASTICITY OF SINGLE DNA-MOLECULES BY USING MAGNETIC BEADS. Science, 1992. 258(5085): p. 1122-1126.
16. Strick, T.R., et al., The elasticity of a single supercoiled DNA molecule. Science, 1996. 271(5257): p. 1835-1837.
17. Haber, C. and D. Wirtz, Magnetic tweezers for DNA micromanipulation. Review of Scientific Instruments, 2000. 71(12): p. 4561-4570.
18. Cluzel, P., et al., DNA: An extensible molecule. Science, 1996. 271(5250): p. 792-794.
19. Leger, J.F., et al., RecA binding to a single double-stranded DNA molecule: A possible role of DNA conformational fluctuations. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(21): p. 12295-12299.
20. Brown, T.A., Genomes, 2nd edition. 2002: Bios Scientific Publishers.
21. Kudo, H., K. Suga, and M. Fujihira, An effect of protruding ends of lambda-DNA on its adsorption onto hydrophobic solid surfaces during molecular combing. Chemistry Letters, 2007. 36(2): p. 298-299.
22. Nakao, H., et al., Transfer-printing of highly aligned DNA nanowires. Journal of the American Chemical Society, 2003. 125(24): p. 7162-7163.
23. Bensimon, A., et al., ALIGNMENT AND SENSITIVE DETECTION OF DNA BY A MOVING INTERFACE. Science, 1994. 265(5181): p. 2096-2098.
24. Bensimon, D., et al., STRETCHING DNA WITH A RECEDING MENISCUS - EXPERIMENTS AND MODELS. Physical Review Letters, 1995. 74(23): p. 4754-4757.
25. Michalet, X., et al., Dynamic molecular combing: Stretching the whole human genome for high-resolution studies. Science, 1997. 277(5331): p. 1518-1523.
26. Yokota, H., et al., A new method for straightening DNA molecules for optical restriction mapping. Nucleic Acids Research, 1997. 25(5): p. 1064-1070.
27. Yokota, H., et al., Spin-stretching of DNA and protein molecules for detection by fluorescence and atomic force microscopy. Analytical Chemistry, 1999. 71(19): p. 4418-4422.
28. Li, J.W., et al., A convenient method of aligning large DNA molecules on bare mica surfaces for atomic force microscopy. Nucleic Acids Research, 1998. 26(20): p. 4785-4786.
29. Klein, D.C.G., et al., Ordered stretching of single molecules of deoxyribose nucleic acid between microfabricated polystyrene lines. Applied Physics Letters, 2001. 78(16): p. 2396-2398.
30. Petit, C.A.P. and J.D. Carbeck, Combing of molecules in microchannels (COMMIC): A method for micropatterning and orienting stretched molecules of DNA on a surface. Nano Letters, 2003. 3(8): p. 1141-1146.
31. Koota, J., et al., Reversible, meniscus-free molecular combing of long-chain DNA. Langmuir, 2007. 23(18): p. 9365-9368.
32. Shin, M., et al., Formation of lambda-DNA's in parallel- and crossed-line Arrays by molecular combing and scanning-probe lithography. Nano Letters, 2006. 6(7): p. 1334-1338.
33. 果尚志, 奈米世界的全方位性工具. 清大物理雙月刊, 2001. 36(6).
34. 張源炘, 以分子梳結合軟微影技術製備大面積金屬奈米線陣列及奈米通道. 2008.
35. Cerf, A., et al., Ordered arrays of single DNA molecules by a combination of capillary assembly, molecular combing and soft-lithography. Microelectronic Engineering, 2009. 86(4-6): p. 1419-1423.
36. Manz, A., et al., MINIATURIZATION OF SEPARATION TECHNIQUES USING PLANAR CHIP TECHNOLOGY. Hrc-Journal of High Resolution Chromatography, 1993. 16(7): p. 433-436.
37. 胡一君, 數位微流體式實驗室晶片. 儀科中心簡訊, 94(69 期).
38. Zoval, J.V. and M.J. Madou, Centrifuge-based fluidic platforms. Proceedings of the Ieee, 2004. 92(1): p. 140-153.
39. He, H.Y., et al., Design and testing of a microfluidic biochip for cytokine enzyme-linked immunosorbent assay. Biomicrofluidics, 2009. 3(2).
40. Brenner, T., et al., Frequency-dependent transversal flow control in centrifugal microfluidics. Lab on a Chip, 2005. 5(2): p. 146-150.
41. Ducree, J., et al., The centrifugal microfluidic bio-disk platform. Journal of Micromechanics and Microengineering, 2007. 17(7): p. S103-S115.
42. Grumann, M., et al., Batch-mode mixing on centrifugal microfluidic platforms. Lab on a Chip, 2005. 5(5): p. 560-565.
43. Haeberle, S., et al., Centrifugo-magnetic pump for gas-to-liquid sampling. Sensors and Actuators a-Physical, 2007. 135(1): p. 28-33.
44. Allemand, J.F., et al., pH-dependent specific binding and combing of DNA. Biophysical Journal, 1997. 73(4): p. 2064-2070.
45. Yager, P., et al., Microfluidic diagnostic technologies for global public health. Nature, 2006. 442(7101): p. 412-418.
46. Sniadecki, N.J. and C.S. Chen, Microfabricated silicone elastomeric post arrays for measuring traction forces of adherent cells, in Cell Mechanics. 2007. p. 313-+.
47. 程俊傑, 探討以圖案式分子梳技術製備整齊排列之長DNA奈米束. 2009.
48. Crampton, N., et al., Formation of aminosilane-functionalized mica for atomic force microscopy imaging of DNA. Langmuir, 2005. 21(17): p. 7884-7891.
校內:2016-08-10公開