簡易檢索 / 詳目顯示

研究生: 余國輝
Yu, Kuo-Hui
論文名稱: 具有改良式通道結構之異質結構場效電晶體之研製
Investigation of Heterostructure Field-Effect Transistors with Improved Channel Structures
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 55
中文關鍵詞: 高溫異質結構場效電晶體高崩潰電壓
外文關鍵詞: high temperature, high breakdown voltage, HFET
相關次數: 點閱:81下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用低壓有機金屬化學氣相沉積法成長及研製三種新穎砷化鎵材料系列之異質結構場效電晶體。實驗上,我們所研製的元件皆具有良好的直流、交流及高溫操作特性。而這些優點則是元件在無線微波通訊領域應用上所必須具備的基本要求。
    首先,我們將反向平面原子摻雜供應層、量子井通道及n+型砷化鎵/p+型磷化銦鎵/n-型砷化鎵駝峰式閘極結構應用在一異質結構場效電晶體中,由於高的閘極位障及良好的載子侷限能力,元件具有低的漏電流及高的崩潰電壓。在室溫下,閘極長度為1微米時,元件兩端閘-汲極崩潰電壓為52 V,三端開路狀態汲-源極崩潰電壓為39.7 V,三端汲-源極操作電壓大於20 V而無大的漏電流產生,另一方面,元件在微波頻率領域及高溫環境下也顯示出良好的操作特性。
    接著,在n+型砷化銦鎵/n型砷化鎵複合式摻雜通道異質結構場效電晶體中,我們利用縮減砷化銦鎵層的厚度以形成通道量子化效應,這可以增加砷化銦鎵通道層的有效能隙,而砷化鎵層則可以增進元件在高電場下之操作能力,因此可避免撞擊游離現象產生,包括漏電流、崩潰電壓、輸出電導、電壓增益及元件特性隨溫度上升而呈現劣化之缺點皆可有效的改善。
    最後,我們研製一種磷化銦鎵/砷化銦鎵/砷化鎵雙層通道結構之擬晶性高電子移動率電晶體。使用雙層通道結構,可以分散因材料晶格不匹配所產生的應力,因此可以利用較厚且具有高銦含量的砷化銦鎵材料做為通道層,提昇閘極工作電壓擺幅及增加載子傳輸特性。此外,我們也利用上、中、下三層平面摻雜層做為載子供應層,這可以使在雙層通道結構內的載子更均勻分佈,增加元件的直流及交流線性度。

    In this dissertation, three novel GaAs-based heterostructure field-effect transistors (HFETs), grown by a low-pressure metal organic chemical vapor deposition (LP-MOCVD), have been fabricated and investigated. Experimentally, all proposed devices show high performances in direct-current (dc), alternating-current (ac), and high-temperature operation. These advantages are the essential requirements for the microwave circuits applications.
    First, an inverted δ-doped sheet as carrier supplier layer, quantum well channel, and n+-GaAs/p+-InGaP/n-GaAs camel-like gate structure are introduced to fabricate a novel HFET. Due to the high-barrier and good carrier confinement, the studied device shows low leakage current and high breakdown voltage. For a 1 μm gate length device, two-terminal gate-drain breakdown voltage of 52 V, three-terminal off-state drain-source breakdown voltage of 39.7 V, and drain-source operation voltage over 20 V with low leakage current are obtained at room temperature. Furthermore, the studied device also shows good microwave characteristics and high breakdown behaviors at high temperature environment.
    Second, the n+-InGaAs/n-GaAs composite doped chanel HFET is fabricated. In the n+-InGaAs/n-GaAs composite doped chanel atructure, the narrow InGaAs layer is used to introduce the channel quantization effect. Thus, the effective energy-gap of InGaAs channel can be increased. In addition, the n-GaAs channel can improve the operation capability under higher electric field. Therefore, the impact ionization effect can be avoided. Also, device characteristics including leakage current, breakdown voltage, output conductance, and voltage gain are improved and show low degradations with increasing the temperature.
    Finally, we fabricate an InGaP/InGaAs/GaAs double channel pseodomorphic high electron mobility transistor (PHEMT). Based on the use of double channel structure, the stress force induced by the lattice mismatch can be reduced. Therefore, the thicker and higher In mole fraction of InGaAs layer can be used. Good carrier transport properties and wide voltage swing are obtained. Besides, the employed top, middle, and bottom triple δ-doped sheets, as carrier supplier layers, cause the uniform distribution of carriers in double channel layers. Experimentally, good dc and ac linearity are obtained.

    Abstract Table Captions Figure Captions Chapter 1. Introduction …………………………………………………… 1 Chapter 2. Quantum Well Channel n+-GaAs/p+-InGaP/n-GaAs Camel-Like Gate Heterostructure Field-Effect Transistor (HFET) 2-1. Introduction ……………………………………………………… 6 2-2. Device Fabrication ………………………………………………. 7 2-3. Experimental Results and Discussion …………………………… 8 2-3-1. DC Performances …………………………………………………. 9 2-3-2. Temperature-Dependent Characteristics ………………………….. 12 2-3-3. Microwave Characteristics ……………………………………….. 17 2-4. Summary ………………………………………………………….. 18 Chapter 3. n+-InGaAs/n-GaAs Composite Doped Channel Heterostructure Field-Effect Transistor (CDC-HFET) 3-1. Introduction ……………………………………………………….. 19 3-2. Device Fabrication ………………………………………………. 20 3-3. Experimental Results and Discussion …………………………….. 21 3-3-1 DC Performances …………………………………………………. 21 3-3-2. Temperature-Dependent Characteristics ………………………….. 23 3-3-3. Microwave Characteristics ………………………………………... 27 3-4. Summary ………………………………………………………… 28 Chapter 4. InGaP/InGaAs/GaAs Double Channel Pseudomorphic High Electron Mobility Transistor (DC-PHEMT) 4-1. Introduction ……………………………………………………….. 29 4-2. Device Fabrication ………………………………………………. 30 4-3. Experimental Results and Discussion …………………………….. 31 4-3-1. DC Performances …………………………………………………. 31 4-3-2. Temperature-Dependent Characteristics ………………………….. 34 4-3-3. Microwave Characteristics ………………………………………... 37 4-4. Summary ………………………………………………………….. 39 Chapter 5. Conclusion and Prospect 5-1. Conclusion .……………………………………………………… 40 5-2. Prospect .…………………………………………………………... 41 References ………………………………………………………………………… 43 Tables Figures Publication List

    [1] H. Kim, H. Yang, C. Huh, S. W. Kim, S. J. Park, and H. Hwang, “Electromigration-induced failure of GaN multi-quantum well light emitting diode,” Electron. Lett., vol. 36, pp. 908-910, 2000.
    [2] C. C. Wu, S. D. Theiuss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, and S. R. Forrest, “Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates,” IEEE Electron Device Lett., vol. 18, pp. 609-612, 1997.
    [3] D. Jang, J. Shim, J. Lee, and Y. Eo, “Asymmetric output characteristics in 1.3 μm spot-size converted laser diodes,” IEEE J. Quantum Electron., vol. 37, pp. 1611-1617, 2001.
    [4] S. Honda, T. Miyake, T. Ikegami, K. Yagi, Y. Bessho, R. Hiroyama, M. Shone, and M. Sawada, “Low threshold 650 nm band real refractive index-guided AlGaInP laser diodes with strain-compensated MQW active layer,” Electron. Lett., vol. 36, pp. 1284-1286, 2000.
    [5] C. J. Vianna, F. Yazdani, and E. A. DeSouza, “Characterisation of analogue self electro-optic effect device with five photodetectors as edge detector,” Electron. Lett., vol. 38, pp. 119-121, 2002.
    [6] J. L. Pau, E. Monroy, E. Munoz, F. Calle, M. A. Sanchez-Garcia, and E. Calleja, “Fast AlGaN metal-semiconductor-metal photodetectors grown on Si(111),” Electron. Lett., vol. 37, pp. 239-240, 2001.
    [7] W. C. Liu, D. F. Guo, S. R. Yih, J. T. Liang, L. W. Laih, and G. M. Lyuu, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 64, pp. 2685-2687, 1994.
    [8] W. C. Hsu, D. F. Guo, W. C. Liu, and W. S. Lour, “Characteristics of a GaAs-inGaAs delta-doped quantum-well switch,” J. Appl. Phys., vol. 73, pp. 8615-8617, 1993.
    [9] W. C. Liu and D. F. Guo, “A new GaAs switching device with double-confinement-collector structure,” Solid-State Electron., vol. 35, pp. 501-504, 1992.
    [10] W. C. Liu, D. F. Guo, and Y. S. Lee, “A confinement-collector GaAs switching decvice prepared by molecular beam epitaxy,” Jpn. J. Appl. Phys., vol. 30, pp. 1937-1939, 1991.
    [11] W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S. Y. Cheng, K. W. Lin, K. H Yu, K. B. Thei, and C. C. Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 47, pp. 1553-1559, 2000.
    [12] L. W. Laih, S. Y. Cheng, K. W. Lin, P. H. Lin, J. Y. Chen, W. C. Wang, and W. C. Liu, “Investigation of step-doped-channel negative-differential-resistance transistor,” Jpn. J. Appl. Phys., vol. 36, pp. 2617-2620, 1997.
    [13] W. C. Liu, J. H. Tasi, W. S. Lour, L. W. Laih, K. B. Thei, and C. Z. Wu, “Multiple negative-differential-resistance (NDR) of InGaP/GaAs heterostructure-emitter bipolar trasistor (HEBT),” IEEE Electron Device Lett., vol. 17, pp. 130-132, 1996.
    [14] W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
    [15] W. C. Liu, S. Y. Cheng, W. L. Chang, H. J. Pan, and Y. H. Shie, “Application of δ-doped wide-gap collector structure for high-breakdown and low-offset voltage transistors,” Appl. Phys. Lett., vol. 73, pp. 1397-1399, 1998.
    [16] W. C. Liu, S. Y. Cheng, J. H. Tsai, P. H. Lin, J. Y. Chen, and W. C. Wang, “InGaP/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT),” IEEE Electron Devcie Lett., vol. 18, pp. 515-517, 1997.
    [17] J. H. Tsai, S. Y. Cheng, L. W. Laih, and W. C. Liu, “AlGaAs/InGaAs/GaAs heterostructure-emitter and heterostructure-base transistor (HEHBT),” Electron. Lett., vol. 32, pp. 1720-1721, 1996.
    [18] S. S. Lu, and C. C. Hung, “High-current-gain Ga0.51In0.49P/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 214-216, 1992.
    [19] W. C. Liu and W. S. Lour, “An improved heterostructure-emitter bipolar transistor (HEBT),” IEEE. Electron Device Lett., vol. 12, pp. 474-476, 1991.
    [20] W. C. Liu, D. F. Guo, and W. S. Lour, “AlGaAs/GaAs double hetrostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Device, vol. 39, pp. 2740-2744, 1992.
    [21] W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel (CDC) heterostructure field-effect transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
    [22] C. Z. Wu, L. W. Laih, and W. C. Liu, “Study of InGaAs/GaAs metal-insulator-semiconductor-like heterostructure field-effect transistor,” Solid-State Electron., vol. 39, pp. 791-795, 1996.
    [23] W. S. Lour, W. L. Chang, W. C. Liu, Y. H. Shie, H. J. Pan, J. Y. Chen, and W. C. Wang, “Application of selective removal of mesa sidewalls for high-breakdown and high-linearity Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Appl. Phys. Lett., vol. 74, pp. 2155-2157, 1999.
    [24] L. W. Laih, W. S. Lour, J. H. Tsai, W. C. Liu, C. Z. Wu, K. B. Thei and R. C. Liu, “Characteristics of metal-insulator-semiconductor (MIS) like In0.2Ga0.8As/GaAs doped-channel structure,” Solid-State Electron., vol. 39, pp. 15-20, 1995.
    [25] W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, Vol. 41, pp. 456-457, 1994.
    [26] D. R. Greenberg, J. A. D. Alamo, J. P. Harbison, and L. T. Florez, “A pseudomorphic AlGaAs/n+-InGaAs metal-insulator-doped channel FET for broad-band, large-signal applications,” IEEE Electron Device Lett., vol. 12, pp. 436-438, 1991.
    [27] A. S. Brown, U. K. Mishra, C. S. Chou, C. E. Hooper, M. A. Melendes, M. Thompson, L. E. Larson, S. E. Rosenbaum, and M. J. Delaney, “AlInAs-GaInAs HEMT’s utilizing low-temperature AlInAs buffers grown by MBE,” IEEE Electron Device Lett., vol. 10, pp. 565-567, 1989.
    [28] K. Shinohara, Y. Yamashita, A. Endoh, K. Hikosaka, T. Matsui, T. Mimura, and S. Hiyamizu, “Ultrahigh-speed pseudomorphic InGaAs/InAlAs HEMTs with 400-GHz cutoff frequency,” IEEE Electron Device Lett., vol. 22, pp. 507-509, 2001.
    [29] M. Chertouk, M. Dammann, K. Kohler, and G. Weimann, “0.15 μm passivated InP-based HEMT MMIC technology with high thermal stability in hydrogen ambient,” IEEE Electron Device Lett., vol. 21, pp. 97-99, 2000.
    [30] K. Maruhashi, H. Mizutani, and K. Ohata, “Design and performance of a Ka-band monolithic phase shifter utilizing nonresonant FET switches,” IEEE Trans. Microwave Theory and Tech., vol. 48, pp. 1313-1317, 2000.
    [31] K. Matsunaga, I. Miura, and N. Iwata, “A CW 4-W Ka-band power amplifier utilizing MMIC multichip technology,” IEEE J. Solid-State Circuits, vol. 35, pp. 1293-1297, 2000.
    [32] H. Mizutani, N. Funabashi, M. Kuzuhara, and Y. Takayama, “Compact DC-60-GHz HJFET MMIC switches using ohmic electrode-sharing technology,” IEEE Trans. Microwave Theory and Tech., vol. 46, pp. 1597-1603, 1998.
    [33] O. S. A. Tang, K. H. G. Duh, S. M. J. Liu, P. M. Smith, W. F. Kopp, T. J. Rogers, and D. J. Pritchard, “Design of high-power, high-efficiency 60-GHz MMICs using an improved nonlinear PHEMT model,” IEEE J. Solid-State Circuits, vol. 32, pp. 1326-1333, 1997.
    [34] A. Ketterson, J. W. Seo, M. Tong, K. Nummila, D. Ballegeer, S. M. Kang, K. Y. Cheng, and I. Adesida, “A 10-GHz bandwidth pseudomorphic GaAs/InGaAs/AlGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron Devices, vol. 39, pp. 2676-2677, 1992.
    [35] W. S. Lour, W. L. Chang, S. T. Young, and W. C. Liu, “Improved breakdown in n+-GaAs/(p+)-GaInP/n-GaAs camel-gate heterojunction-FET grown by LP-MOCVD,” Electron. Lett., vol. 34, pp. 814-815, 1998.
    [36] Y. S. Lin, T. P. Sun, and S. S. Lu, “Ga0.51In0.49P/In0.15Ga0.85As/GaAs Pseudomorphic Doped-Channel FET with High-Current Density and High-Breakdown Voltage,” IEEE Electron Device Lett., vol. 18, pp. 150-152, 1997.
    [37] S. Y. Cheng, W. L. Chang, H. J. Pan, Y. H. Shie, and W. C. Liu, “Design consideration of emitter-base junction structure for InGaP/GaAs heterojunction bipolar transistors,” Solid-State Electron., vol. 43, pp. 297-304, 1999.
    [38] Y. J. Chan, D. Pavlidis, M. Razeghi, and F. Omnes, “GaInP/GaAs HEMT’s exhibiting good electrical performance at cryogenic temperatures,” IEEE Trans. Electron Devices, vol. 37, pp. 2141-2147, 1990.
    [39] M. A. Rao, E. J. Caine, H. Kroemer, S. I. Loun, and D. I. Babic, “Determination of valence and conductance-band discontinuities at the (Ga,In)P/GaAs heterojunction by C-V profiling,” J. Appl. Phys., vol. 61, pp. 643-649, 1987.
    [40] Y. S. Lin, W. C. Hsu, and C. S. Yang, “Low-leakage current and high-breakdown voltage GaAs-based heterostructure field-effect transistor with In0.5(Al0.66Ga0.34)0.5P Schottky layer,” Appl. Phys. Lett., vol. 75, pp. 3551-3553, 1999.
    [41] C. L. Chen, L. J. Mahoney, M. J. Manfra, F. W. Smith, D. H. Temme, A. R. Calawa, “High-breakdown-voltage MESFET with a low-temperature-grown GaAs passivation layer and overlapping gate structure,” IEEE Electron Device Lett., vol. 13, pp. 335-337, 1992.
    [42] L. W. Yin, Y. Hwang, J. H. Lee, R. M. Kolbas, R. J. Trew, and U. K. Mishra, “Improved breakdown voltage in GaAs MESFETs utilizing surface layers of GaAs grown at a low temperature by MBE,” IEEE Electron Device Lett., vol. 11, pp. 561-563, 1990.
    [43] L. W. Laih, S. Y. Cheng, W. C. Wang, P. H. Lin, J. Y. Chen, W. C. Liu, and W. Lin, “High-performance InGaP/InGaAs/GaAs step-compositioned doped-channel field-effect transistor (SCDCFET),” Electron. Lett., vol. 33, pp. 98-99, 1997.
    [44] K. L. Tan, D. C. Streit, R. M. Dia, S. K. Wang, A. C. Han, P. D. Chow, T. Q. Trinh, P. H. Liu, J. R. Velebir, and H. C. Yen, “High-power V-band pseudomorphic InGaAs HEMT,” IEEE Electron Device Lett., vol. 12, pp. 213-214, 1991.
    [45] A. Lepore, M. Levy, H. Lee, E. Kohn, D. Radulescu, R. Tiberio, P. Tasker, and L. Eastman, “Fabrication and performance of 0.1-μm gate-length AlGaAs/GaAs HEMTs with unity current gain cutoff frequency in excess of 110 GHz,” IEEE Trans. Electron Devices, vol. 35, pp. 2441-2442, 1988.
    [46] C. D. Wilson, A. G. O’neill, S. M. Baier, and J. C. Nohava, “High temperature performance and operation of HFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 201-206, 1996.
    [47] C. Ito, T. Jenkins, G. Trombley, R. Lee, R. Reston, C. Havasy, B. Johnson, and C. Eppers, “High-temperature microwave characteristics of GaAs MESFET device with AlAs buffer layers,” IEEE Electron Device Lett., vol. 17, pp. 16-18, 1996.
    [48] J. S. Su, W. C. Hsu, D. T. Lin, W. Lin, H. P. Shiao, Y. S. Lin, J. Z. H, and P. J. Chou, “High-breakdown voltage Al0.66In0.34As0.85Sb0.15/In0.75Ga0.25As/InP heterostructure field-effect transistors,” Electron. Lett., vol. 32, pp. 2095-2097, 1996.
    [49] C. D. Wilson, and A. G. O’neill, “High temperature operation of GaAs based FETs,” Solid-State Electronics, vol. 38, pp.339-343, 1995.
    [50] T. Ytterdal, B. J. Moon, T. A. Fjeldly, and M. S. Shur, “Enhanced GaAs MESFET CAD model for a wide range of temperature,” IEEE Trans. Electron Devices, vol. 42, pp. 1724-1734, 1995.
    [51] F. S. Shoucair, and P. K. Ojala, “High-temperature electrical characteristics of GaAs MESFET’s,” IEEE Trans. Electron Devices, vol. 39, pp. 1551-1557, 1992.
    [52] R. E. Anholt, and S. E. Swirhun, “Experimental investigation of the temperature dependence of GaAs FET equivalent circuit,” IEEE Trans. Electron. Devices, vol.39, pp. 2029-2036, Sept. 1992.
    [53] K. H. Yu, W. L. Chang, S. C. Feng, and W. C. Liu, “Characteristics of GaAs/InGaP/GaAs Doped Channel Camel-Gate Field-Effect Transistor,” Solid-State Electron., vol. 44, pp. 2069-2075, 2000.
    [54] W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
    [55] W. S. Lour, J. H. Tsai, L. W. Laih, and W. C. Liu, “Influence of channel doping-profile on camel-gate field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
    [56] R. E. Thoren, S. L. Su, R. J. Fischer, W. F. Kopp, W. G. Lyons, P. A. Miller, and H. Morkos, “Analysis of camel gate FET’s,” IEEE Trans. Electron Devices, vol. 30, pp. 212-216, 1983.
    [57] R. E. Thorne, S. L. Su, W. Kopp, R. Fischer, T. J. Drummond, and H. Morkoc, “Normally-on and normally-off camel diode gate GaAs field-effect transistors for large scale integration,” J. Appl. Phys., vol. 53, pp. 5951-5958, 1982.
    [58] M. T. Yang, and Y. J. Chan, “Device linearity improvement by Al0.3Ga0.7As/In0.2Ga0.8As heterostructure doped-channel FET’s,” IEEE Electron Device Lett., vol. 16, pp. 33-35, 1995.
    [59] W. C. Hsu, C. L. Wu, M. S. Tsai, C. Y. Chang, W. C. Liu, and H. M. Shieh, “Characterization of high performance inverted delta-modulation-doped (IDMD) GaAs/InGaAs pseudomorphic heterostructure FET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 804-809, 1995.
    [60] Y. J. Chan, and M. T. Yang, “Al0.3Ga0.7As/InxGa1-xAs (0 x 0.25) doped-channel field-effect transistors (DCFET’s),” IEEE Trans. Electron Devices, vol. 42, pp. 1745-1749, 1995.
    [61] C. Tedesco, E. Zanoni, C. Canali, S. Bigliardi, M. Manfredi, D. C. Streit, and W. T. Anderson, “Impact ionization and light emission in high-power pseudomorphic AlGaAs/InGaAs HEMT’s” IEEE Trans. Electron. Devices, vol. 40, pp. 1211-1214, 1993.
    [62] E. Zanoni, M. Manfredi, S. Bigliardi, A. Paccanella, P. Pisoni, C. Tedesco, and C. Canali, “Impact ionization and light emission in AlGaAs/GaAs HEMT’s,” IEEE Trans. Electron. Devices, vol. 39, pp. 1849-1857, 1992.
    [63] C. Tedesco, M. Manfredi, A. Paccanella, E. Zanoni, and C. Canali, “Hot carrier induced photo emission in submicron GaAs devices,” in IEDM Tech. Dig., pp. 437-440, 1991.
    [64] K. Hui, C. Hu, P. George, and P. K. Ko, “Impact ionization in GaAs MESFETs,” IEEE Electron Device Lett., vol. 11. Pp. 113-115, 1990.
    [65] Y. Wada, and M. Tomizawa, “Drain avalanche breakdown in GaAs MESFET’s,” IEEE Trans. Electron. Devices, vol. 35, pp. 1765-1770, 1988.
    [66] A. D. Carlo, L. Rossi, P. Lugli, G. Zandler, G. Meneghesso, M. Jackson, and E. Zanoni, “Monte Carlo study of the dynamic breakdown effects in HEMT’s,” IEEE Electron Device Lett., vol. 21, pp. 149-151, 2000.
    [67] G. Meneghesso, A. Neviani, R. Oesterholt, M. Matloubian, T. Liu, J. J. Brown, C. Canali, and E. Zanoni, “On-state and off-state breakdown in GaInAs/InP composite-channel HEMT’s with variable GaInAs channel thickness,” IEEE Trans. Electron Devices, vol. 46, pp. 2-9, 1999.
    [68] C. R. Bolognesi, M. W. Dvorak, D. H. Chow, “Impact ionization suppression by quantum confinement: Effects on the DC and microwave performance of narrow-gap channel InAs/AlSb HFET’s,” IEEE Trans. Electron Devices, vol. 46, pp. 826-832, 1999.
    [69] T. Enoki, K. Arai, A. Kohzen, and Y. Ishii, “Design and characteristics of InGaAs/InP composite-channel HFET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 1413-1418, 1995.
    [70] S. R. Bahl, and J. A. Del Alamo, “Breakdown voltage enhancement from channel quantization in InAlAs/n+-InGaAs HFET’s,” IEEE Electron Device Lett., vol. 13, pp. 123-125, 1992.
    [71] D. F. Welch, G. W. Wicks, and L. F. Eastman, “Optical properties of GaInAs/AlInAs single quantum wells,” Appl. Phys. Lett., vol. 43, pp. 761-763, 1983.
    [72] S. J. Jo, J. H. Kim, and J. I. Song, “Molecular beam epitaxy growth and characterization of InGaP/InGaAs pseudomorphic high electron mobility transistors (HEMTs) having a channel layer over critical layer thickness,” IEEE Trans. Electron Devices, vol. 49, pp. 354-360, 2002.
    [73] M. Meshkinpour, M. S. Goorsky, G. Chu, D. C. Streit, T. R. Block, and M. Wojtowicz, “Role of misfit dislocations on pseudomorphic high electron mobility transistors,” Appl. Phys. Lett., vol. 66, pp. 748-750, 1995.
    [74] A. M. Kusters, A. Kohl, V. Sommer, R. Muller, and K. Heime, “Optimized double heterojunction pseudomorphic InP/InxGa1-xAs/InP (0.64 x 0.82) p-MODFET’s and the role of strain in their design,” IEEE Trans. Electron Devices, vol. 40, pp. 2164-2170, 1993.
    [75] J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L. Kavanagh, “Strain relaxation of compositionally graded InxGa1-xAs buffer layer for modulation doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett., vol. 60, pp. 1129-1131, 1992.
    [76] J. W. Matthews, “Defects associated with the accommodation of misfit between crystals,” J. Vac. Sci. Technol., vol. 12, pp. 126-133, 1975.
    [77] J. W. Matthews, S. Mader, and T. B. Light, “Accommodation of misfit across the interface between crystals of semiconducting elements of compounds,” J. Appl. Phys., vol. 41, pp. 3800-3804, 1970.
    [78] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, J. S. Weiner, J. Lin, W. E. Mayo, and Y. K. Chen, “Single- and double-heterojunction pseudomorphic In0.5(Al0.3Ga0.7)0.5P/In0.2Ga0.8As high electron mobility transistors grown by gas source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 18, pp. 550-552, 1997.
    [79] H. Q. Zheng, G. I. Ng, Y. Q. Zhang, K. Radhakrishnan, K. Y. Lee, P. Y. Chee, M. S. Tse, J. X. Weng, and S. F. Yoon, “High linearity, current drivability and fmax using pseudomorphic GaAs double-heterojunction HEMT (DHHEMT),” Proceedings., 1996 IEEE International Conference on Semiconductor Electronics, pp. 12-14.
    [80] C. Lien, Y. Huang, H. Chien, and W. Wang, “Charge control model of the double delta-doped quantum-well field-effect transistor,” IEEE Trans. Electron Devices, vol. 41, pp. 1351-1356, 1994.
    [81] M. Tomizawa, T. Furuta, K. Yokoyama, and A. Yoshii, “Modeling for electron transport in AlGaAs/GaAs/AlGaAs double-heterojunction structures,” IEEE Trans. Electron Devices, vol. 36, pp. 2380-2385, 1989.
    [82] W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 1290-1296, 2001.
    [83] K. W. Kim, H. Tian, and M. A. Littlejohn, “Analysis of delta-doped and uniformly doped AlGaAs/GaAs HEMT’s by ensemble Monte Carlo simulations,” IEEE Trans. Electron Devices, vol. 38, pp. 1737-1742, 1991.
    [84] H. F. Chau, D. Pavlidis, J. L. Chraux, and J. Graffuil, “Studies of dc, low frequency, and microwave characteristics of uniform and step-doped GaAs/AlGaAs HEMT’s,” IEEE Trans. Electron Devices, vol. 36, pp. 2288-2297, 1989.
    [85] G. Gillman, B. Vinter, E. Barbier, and T. Tardella, “Experimental and theoretical mobility of electrons in delta-doped GaAs,” Appl. Phys. Lett., vol. 52, pp. 972-974, 1988.
    [86] N. Moll, M. R. Heuschen, and A. F. Colbrie, “Pulse-doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879-886, 1988.
    [87] E. F. Schubert, J. E. Cunningham, and W. T. Tsang, “Electron-mobility enhancement and electron-concentration enhancement in δ-doped n-GaAs at T=300 K,” Solid State Commun., vol. 63, pp. 591-594, 1987.
    [88] Y. C. Chou, G. P. Li, Y. C. Chen, C. S. Wu, K. K. Yu, and T. A. Midford, “Off-state breakdown effects on gate leakage current in power pseudomorphic AlGaAs/InGaAs HEMT’s,” IEEE Electron Device Lett., vol. 17, pp. 479-481, 1996.
    [89] C. L. Chen, F. W. Smith, B. J. Clifton, L. J. Mahoney, M. J. Manfra, and A. R. Calawa, “High-power-density GaAs MISFET’s with a low-temperature-grown epitaxial layer as the insulator,” IEEE Electron Device Lett., vol. 12, pp.306-308, 1991.
    [90] B. T. Jeon, J. H. Han, K. Lee, and Y. S. Kwon, “Self-aligned shallow junction MJFET (metal junction FET) for higher turn-on and breakdown voltage,” IEEE Electron Device Lett., vol. 13, pp. 630-632, 1992.
    [91] Y. Okamoto, K. Matsunaga, and M. Kuzuhara, “Enhancement-mode buried gate InGaP/AlGaAs/InGaAs heterojunction FETs fabricated by selective wet etching,” IEE Electron Lett., vol. 31, pp. 2216-2218, 1995.
    [92] J. B. Shealy, M. M. Hashemi, K. Kiziloglu, S. P. Denbaars, U. K. Mishra, T. K. Liu, J. J. Brown, and M. Lui, “High-breakdown-voltage AlInAs/GaInAs junction-modulated HEMT’s (JHEMT’s) with regrown ohmic contacts by MOCVD,” IEEE Electron Device Lett., vol. 14, pp. 545-547, 1993.
    [93] W. L. Chang, H. J. Pan, W. C. Wang, K. B. Thei, S. Y. Cheng, W. S. Lour, and W. C. Liu, “Temperature-dependent characteristics of the inverted delta-doped V-shaped InGaP/InxGa1-xAs/GaAs pseudomorphic transistors,” Jpn. J. Appl. Phys. Lett., vol. 38, pp. L1385-1387, 1999.
    [94] P. Fay, K. Stevens, J. Elliot, and N. Pan, “Performance dependence of InGaP/InGaAs/GaAs pHEMTs on gate metallization,” IEEE Electron Device Lett., vol. 20, pp. 554-556, 1999.
    [95] A. Bosacchi, S. Franchi, E. Gombia, R. Mosca, F. Fantini, S. Franchi, and R. Menozzi, “Thermal stability of Al/AlGaAs and Al/GaAs/AlGaAs (MBE) Schottky barriers,” Electron Lett., vol. 29, pp. 651-653, 1993.
    [96] M. T. Yang, and Y. J. Chan, “Device linearity comparisons between doped-channel and modulation-doped designs in pseudomorphic Al0.3Ga0.7As/In0.2Ga0.8As heterostructures,” IEEE Trans. Electron Devices, vol. 43, pp. 1174-1180, 1996.
    [97] S. R. Bahl, J. A. del Alamo, J. Dickmann, and S. Schildberg, “Offstate breakdown in InAlAs/InGaAs MODFET’s,” IEEE Trans. Electron Devices, vol. 42, pp. 15-22, 1995.
    [98] S. R. Bahl, and J. A. del Alamo, “Physics of breakdown in InAlAs/n+-InGaAs heterostructure field-effect transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 2268-2275, 1994.
    [99] S. R. Bahl, and J. A. D. Alamo, “A new drain-current injection technique for the measurement of off-state breakdown voltage in FET’s,” IEEE Trans. Electron Devices, vol. 40, pp. 1558-1560, 1993.
    [100] T. Enoki, S. Sugitani, and Y. Yamane, “Characteristics including electron velocity overshoot for 0.1-μm-gate-length GaAs SAINT MESFET’s,” IEEE Trans. Electron Devices, vol. 37, pp. 935-941, 1990.
    [101] J. M. Golio, “Ultimate scaling limits for high-frequency GaAs MESFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 839-848, 1988.
    [102] M. B. Das, “A high aspect ratio design approach to millimeter-wave HEMT structures,” IEEE Trans. Electron Devices, vol. 32, pp. 11-17, 1985.
    [103] W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, K. H. Yu, and S. C. Feng, “Application of a new airbridge-gate structure for high-performance Ga0.51In0.49P/In0.15Ga0.85As/GaAs pseudomorphic field-effect transistors,” Appl. Phys. Lett., vol. 74, pp. 1996-1998, 1999.
    [104] W. S. Lour, and C. Y. Lia, “Comparisons between mesa-gate and airbridge-gate AlGaAs/InGaAs doped-channel field-effect transistors,” Semicond. Sci. Technol., vol. 13, pp. 796-800, 1998.
    [105] C. H. Chen, M. Shur, and A. Peczalski, “Trapping-enhanced temperature variation of the threshold voltage of GaAs MESFET’s,” IEEE Trans. Electron Devices, vol. 33, pp. 792-798, 1986.
    [106] Y. Ytterdal, M. Hurt, M. Shur, H. Park, R. Tsai, and W. C. B. Peatman, “High-temperature characteristics of 2-D MESFET’s,” IEEE Electron Device Lett., vol. 17, pp. 214-216, 1996.
    [107] S. Y. Chou, and D. A. Antoniadis, “Relationship between measured and intrinsic transconductance of FET’s,” IEEE Trans. Electron Devices, vol. 34, pp. 448, 1987.
    [108] D. R. Greenberg, and J. A. D. Alamo, “Nonlinear source and drain resistance in recessed-gate heterostructure field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 1304-1306, 1996.
    [109] D. Xu, T. Enoki, and Y. Ishii, “Impact of recess-etching-Assisting resist-openings on the shapes of gate grooves for short gate length InAlAs/InGaAs heterojunction FET’s,” IEEE Trans. Electron Devices, vol. 46, pp. 833-839, 1999.
    [110] D. C. Dumka, G. Cueva, I. Adesida, H. Hier, O. A. Aina, “Doped multichannel AlAs0.56Sb0.44/In0.53Ga0.47As field effect transistors,” Electron. Lett., vol. 35, pp. 1673-1674, 1999.
    [111] Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF performance of LP-MOCVD grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-delta doped GaAs layer,” IEEE Electron Device Lett., vol. 16, pp. 563-565, 1995.
    [112] D. H. Jeong, K. S. Jang, J. S. Lee, Y. H. Jeong, and B. Kim, “DC and AC characteristics of Al0.25Ga0.75As/GaAs quantum-well delta-doped channel FET grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 13, pp. 270-272, 1992.
    [113] N. X. Nguyen, W. N. Tiang, K. A. Baumann, and U. K. Mishra, “High-breakdown AlGaAs/InGaAs/GaAs PHEMT with tellurium doping,” IEE Electron. Lett., vol. 31, pp. 586-588, 1995.
    [114] W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/δ(p+)-GaInP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
    [115] H. R. Chen, M. Y. Wu, W. S. Lour, G. L. Hung, and Y. M. Shih, “Direct current and alternating current performance in InGaP/InxGa1-xAs FETs using airbridge gate with multiple piers,” Semicond. Sci. Technol., vol. 17, pp. 312-317, vol. 14, 1999.
    [116] A. Kastalsky, and R. A. Kiehi, “On the low-temperature degradation of (AlGa)As/GaAs modulation-doped field-effect transistors,” IEEE Trans. Electron. Devices, vol. 33, pp. 414-423, 1986.
    [117] P. C. Chao, S. C. Palmateer, P. M. Smith, U. K. Mishra, K. H. G. Duh, and J. C. M. Hwang, “Millimeter-wave low noise high electron mobility transistors,” IEEE Electron Device Lett., vol. 6, pp. 531-533, 1985.
    [118] W. P. Hong, J. Harbison, L. T. Florez, and J. H. Abeles, “Characterization of Al0.3Ga0.7As/GaAs quantum-well delta-doped channel FET grown by molecular-beam epitaxy,” IEEE Trans. Electron. Devices, vol. 36, pp. 2615-2616, 1989.
    [119] S. S. Lu, Y. W. Hsu, C. C. Meng, and L. P. Chen, “Single-voltage-supply operation of Ga0.51In0.49P/In0.15Ga0.58As insulated-gate FET’s for power application,” IEEE Electron Device Lett., vol. 20, pp. 21-23, 1999.
    [120] H. Masato, M. Maeda, H. Fujimoto, S. Morimoto, M. Nakamura, Y. Yoshikawa, H. Ikeda, H. Kosugi, and Y. Ota, “Analogue/Digital dual power module using ion-implanted GaAs MESFET’s,” in IEEE MTT Symp. Dig., 1995, pp. 567-570.
    [121] T. Yokoyama, T. Kunihisa, M. Nishijima, S. Yamamoto, M. Nishitsuji, K. Nishii, M. Nakayama, and O. Ishikawa, “Low current dissipation pseudomorphic MODFET MMIC power amplifier for PHS operating with a 3.5 V single voltage supply,” in Proc. GaAs IC Symp., 1996, pp. 107-110.

    下載圖示 校內:立即公開
    校外:2002-07-09公開
    QR CODE