簡易檢索 / 詳目顯示

研究生: 劉奕成
Liu, I-Cheng
論文名稱: 中介認證式輕量化量子金鑰分配協定
Mediated authenticated lightweight quantum key distribution protocols
指導教授: 黃宗立
Hwang, Tzone-Lih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 66
中文關鍵詞: 量子密碼學量子金鑰分配協定第三方輕量化認證式量子協定
外文關鍵詞: Quantum Cryptography, Quantum Key Distribution, Third Party, Lightweight, Authenticated Quantum Protocol
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了兩個在第三方幫助下的中介認證式輕量化量子金鑰分配協定。首先,我們提出了透過不誠實第三方幫忙的不需要使用理想認證通道的中介認證式純輕量化量子金鑰分配協定。在此純輕量化量子協定中,兩個參與者和不誠實的第三方皆為輕量化使用者。接著提出了利用半誠實第三方幫助的參與者之間不需要預先共享密鑰的三方認證式量子金鑰分配協定,讓參與者之間不需要有預共享密鑰也能安全地分享金鑰並且此半誠實第三方只需使用到輕量化量子能力。在上述提出的協定中,參與者皆使用了”輕量化量子環境”中較輕量的兩種量子能力且皆不需使用到假想的傳統認證通道。並且,將這兩個量子金鑰分配協定經過延伸修改使其成為量子對話應用。最後所提出的協定在集體攻擊下被證明是安全的。

    This thesis proposes two mediated authenticated lightweight quantum key distribution protocols with the help of a third party (TP). First, we propose a mediated authenticated pure lightweight quantum key distribution (MAPLQKD) protocol with the help of an untrusted TP. In this pure lightweight quantum protocol, the participants and the untrusted TP are all lightweight users. Next, a three-party authenticated lightweight quantum key distribution (TPALQKD) protocol with the help of a semi-honest TP is proposed. In the TPALQKD protocol, participants can share a key securely without pre-sharing keys with each other, and the semi-honest TP only needs to perform lightweight quantum capabilities. In the above proposed protocols, the participants use the two lighter quantum capabilities of the “lightweight quantum environment” and do not need to assume the existence of an ideal authenticated classical channel. Furthermore, the proposed QKD protocols are extended and modified, the application of quantum dialogue protocols are proposed. Finally, the security analysis shows that the proposed protocols are robust under collective attacks.

    中文摘要 I Abstract II 誌 謝 III Content IV List of Tables V List of Figures VI Chapter 1 Introduction 1 1.1 Overview 1 1.2 Motivation and Contribution 2 1.3 Thesis Structure 4 Chapter 2 Preliminaries 5 2.1 Properties of single photons 5 2.2 Unitary operators 7 2.3 Collective attacks and Robustness 8 Chapter 3 Mediated Authenticated Pure Lightweight Quantum Key Distribution Protocol Without Ideal Authenticated Classical Channel 9 3.1 Proposed MAPLQKD protocol 9 3.2 Proposed MAPLQD protocol 12 3.3 Security analyses 15 3.4 Comparison 31 Chapter 4 Three-Party Authenticated Lightweight Quantum Key Distribution Protocol Without Pre-Shared Key Between Participants 33 4.1 Proposed TPALQKD protocol 33 4.2 Proposed TPALQD protocol 36 4.3 Security analyses 39 4.4 Comparison 62 Chapter 5 Conclusion 64 References 65

    [1] C. H. Bennett, G. Brassard, Theor. Comput. Sci. 2014, 560, 7.
    [2] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, Nature 2003, 421, 238.
    [3] S.-K. Chong, T. Hwang, Opt. Commun. 2010, 283, 1192.
    [4] T. Hwang, C.-C. Hwang, C.-W. Tsai, Eur. Phys. J. D 2011, 61, 785.
    [5] B. A. Nguyen, Phys. Lett. A 2004, 328, 6.
    [6] G. Zeng, W. Zhang, Phys. Lett. A 2000, vol. 61, 022303.
    [7] T. Hwang, K.-C. Lee, C.-M. Li, IEEE Trans. Dependable Secure Comput. 2007, 4, 71.
    [8] C.-Y. Lin, C.-W. Yang, T. Hwang, Int. J. Theor. Phys. 2015, 54, 780.
    [9] T. Hwang, Y.-P. Luo, Quantum Inf. Process. 2015, 14, 4631.
    [10] M. Boyer, D. Kenigsberg, T. Mor, Phys. Rev. Lett. 2007, 99, 140501.
    [11] M. Boyer, R. Gelles, D. Kenigsberg, T. Mor, Phys. Rev. A 2009, 79, 032341.
    [12] X. Zou, D. Qiu, L. Li, L. Wu, L. Li, Phys. Rev. A 2019, 79, 052312.
    [13] K.-N. Zhu, N.-R. Zhou, Y.-Q. Wang, X.-J. Wen, Int. J. Theor. Phys. 2018, 57, 3621.
    [14] T.-Y. Ye, C.-Q. Ye, Quantum Inf. Process. 2018, 57, 1440.
    [15] H.-M. Pang, Quantum Inf. Process. 2020, 59, 1364.
    [16] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, E. Polzik, Nature 2004, 432, 482.
    [17] T. Hwang, Y.-J. Chen, C.-W. Tsai, C.-C. Kuo, (Preprint) arXiv:2007.05804, v2, submitted: Nov 2020.
    [18] H.-K. Lo, M. Curty, B. Qi, Phys. Rev. Lett. 2012, 108, 130503.
    [19] S. Abruzzo, H. Kampermann, D. Bruß, Phys. Rev. A 2014, 89, 012301.
    [20] A. Maitra, Quantum Inf. Process. 2017, 16, 305.
    [21] W.O. Krawec, Phys. Rev. A 2015, 91, 032323.
    [22] Y. Zhao, B. Qi, H.-K Lo, Phys. Rev. A 2008, 77, 052327.
    [23] P.-H. Lin, C.-W. Tsai, T. Hwang, Ann. Phys. 2019, 531, 1800347.
    [24] X.-B. Chen, G. Xu, X.-X. Niu, Q.-Y Wen, Y.-X. Yang, Opt. Commun. 2010, 283, 1561.
    [25] N. Jefferies, C. Mitchell, M. Walker, Lect. Notes Comput. Sci. 1996, 1029, 98.
    [26] S.-L. Huang, T. Hwang, P. Gope, Int. J. Theor. Phys. 2016, 55, 2969.
    [27] J. Gu, T. Hwang, (Preprint) arXiv:2102.01878, v1, submitted: Feb 2021.
    [28] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, M. Peev, Rev. Mod. Phys. 2009, 81, 1301.
    [29] B. Preneel, H. Dobbertin, A. Bosselaers, CryptoBytes 1997, 3, 9.

    無法下載圖示 校內:2026-09-08公開
    校外:2026-09-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE