簡易檢索 / 詳目顯示

研究生: 洪舜平
Hong, Shun-Ping
論文名稱: 應用證據推理法於直覺模糊環境之群體決策模式
Developing group decision-making models under intuitionistic fuzzy environments by using evidential reasoning methods
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 直覺式模糊數群體多屬性決策決策整合時機證據推理法
外文關鍵詞: Intuitionistic fuzzy sets, Group MADM, Decision integration timing, Evidential reasoning method
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 決策乃為生活中重要的一部分,隨著時代的進步,問題的複雜度也隨之上升,單一決策者雖然能快速產生決策,但評估結果可能會過於主觀,且可能沒辦法考量到問題的所有面向,此時群體決策模式便提供一個適當的解決方法;同樣地,問題愈趨複雜使得單一準則的決策漸漸不敷使用,因此必須透過多準則決策來輔以進行決策;而過往在決策進行時評估值往往採用的是明確值,但由於在評估時往往會涉及專家或評估者自身的主觀想法,這些主觀想法往往會含有不確定性與模糊性,因此本研究讓專家採以直覺式模糊數進行評估。
    熵值(entropy)在熱力學中是用來描述分子不規則運動的度量,在模糊集合理論中則是被用來表示模糊數的模糊程度,本研究透過熵值先求出評估值的明確程度,再以明確程度的相對比例求出客觀權重值,因為過去許多文獻權重常常是已知或直接給定的。證據推理法可視為證據理論的延伸,可以將不確定與不完整的資訊(證據)進行融合,而決策中就常常含有不確定的評估資訊,本研究欲將證據推理法延伸至群體決策模式,透過兩次證據推理法整合專家意見及評估屬性。
    本研究決策模式包含模式一及模式二,模式一與模式二的主要差異乃在於整合時機點的不同。初始階段為決策的前置作業,包括決定參與決策的專家、確定可行方案及評估屬性,讓專家進行評估並計算專家共識程度。模式一在整合的順序上為先對專家整合,然後才對評估屬性進行整合;模式二則是會先讓各專家對評估屬性進行整合,最後才進行專家間的整合。整合完畢後,透過排序函數對各方案進行排序,選出最佳的方案。最後透過範例演算,分析並比較本研究兩模式在排序上的差異、本研究的模式與其他決策方法在排序上的差異,以及不同排序方法的差異。

    Decision making(DM) is an important part of daily life. With the advance of science and technology, DM problems have become more complex. Although a single decision maker can make a decision efficiently, the outcome might be subjective. In the same way, because of the complexity of the problem, single criteria can not describe the problem sufficiently. For these reasons, multiple attribute group decision making(MAGDM) can be a useful tool to deal with problems of this kind.
    In the past, when experts evaluated each alternative with respect to different attributes, most of them used crisp value. However, there exist uncertain or fuzzy areas in human thinking. In view of this, intuitionistic fuzzy number provide a better way to handle fuzziness and uncertainty.
    In this thesis, we use entropy to find weights to develop two group decision making models under intuitionistic fuzzy environments by using evidential reasoning methods. The main difference between Model 1 and Model 2 is integration timing. Model 1 integrates expert opinions first and then integrates attributes. Model 2 integrates attributes first and then integrates expert opinions. After all integration is completed, the proposed ranking function is used to sort every alternative and choose the best one. At the end of this thesis, four examples are presented to illustrate the procedure of the proposed methods as well as to compare the sorting results between different models.

    目錄 摘要 .............................................................................................................................I 誌謝 ..........................................................................................................................VI 目錄 ........................................................................................................................VII 表目錄 .......................................................................................................................VIII 圖目錄 ...........................................................................................................................X 第一章 緒論....................................................................................................................1 1.1 研究背景與動機 ............................................................................................... 1 1.2 研究目的 ........................................................................................................... 2 1.3 研究範圍與限制 ............................................................................................... 3 1.4 研究流程 ........................................................................................................... 3 1.5 研究架構 ........................................................................................................... 5 第二章 文獻探討............................................................................................................7 2.1 直覺式模糊集合 ............................................................................................... 7 2.2 群體決策與多準則決策 ................................................................................. 15 2.3 證據理論與證據推理法 ................................................................................. 19 第三章 決策模式建構..................................................................................................27 3.1 研究構想 ......................................................................................................... 27 3.2 模式建構 ......................................................................................................... 30 第四章 範例演算..........................................................................................................47 4.1 模式一及模式二比較 ..................................................................................... 47 4.2 與其他決策方法比較 ..................................................................................... 61 4.3 排序方法比較 ................................................................................................. 73 4.4 小結 ................................................................................................................. 75 第五章 結論與建議......................................................................................................76 5.1 研究結論 ......................................................................................................... 76 5.2 未來研究方向 ................................................................................................. 77 參考文獻 ..........................................................................................................................78

    Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. Boran, F. E., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36(8), 11363-11368.
    Bui, T. X., & Jarke, M. (1986). Communications design for Co-oP: a group decision support system. ACM Transactions on Information Systems, 4(2), 81-103.
    Burillo, P., & Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems, 78(3), 305-316.
    Chen, S.-M., & Tan, J.-M. (1994). Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 67(2), 163-172.
    Chen, X., & Fan, Z.-p. (2007). Study on Assessment Level of Experts based on Difference Preference Information. Systems Engineering - Theory & Practice, 27(2), 27-35.
    Chen, Z., & Yang, W. (2011). A new multiple attribute group decision making method in intuitionistic fuzzy setting. Applied Mathematical Modelling, 35(9), 4424-4437.
    Chen, S. M., Cheng, S. H., & Chiou, C. H. (2016). Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Information Fusion, 27, 215-227.
    Dempster, A. P. (1968). A generalization of bayesian inference. Journal of the Royal Statistical Society, 30, 205-247.
    Delgado, M., Herrera, F., Herrera-Viedma, E., & Martínez, L. (1998). Combining numerical and linguistic information in group decision making. Information Sciences, 107(1–4), 177-194.
    Fu, C., & Yang, S. L., (2012). An evidential reasoning based consensus model for multiple attribute group decision analysis problems with interval-valued group consensus requirements. European Journal of Operational Research, 223, 167-176.
    Fu, C., Yang, J. B., & Yang, S. L., (2015). A group evidential reasoning approach based on expert reliability. European Journal of Operational Research, 246, 886-893.
    Hwang, C. L., & Yoon, K. (1981). Multiple Attribute Decision Making Methods and applications: Springer. Berlin Heidelberg.
    Hwang, C. L., & Yoon, K. (1995). Multiple Attribute Decision Making: An Introduction, Sage Publications Inc., Thousand Oaks.
    Hong, D. H., & Choi, C.-H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 114(1), 103-113.
    Joshi, D., & Kumar, S. (2014). Intuitionistic fuzzy entropy and distance measure based TOPSIS method for multi-criteria decision making. Egyptian Informatics Journal, 15(2), 97-104.
    Luo, Y., & Wei, G. (2009, 25-27 May 2009). Multiple attribute decision making with intuitionistic fuzzy information and uncertain attribute weights using minimization of regret. Paper presented at the Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference on.
    Liu, J., Liao, X., & Yang, J. B. (2015). A group decision-making approach based on evidential reasoning for multiple criteria sorting problem with uncertainty.
    European Journal of Operational Research, 246, 858-873.
    Ramanathan, R., & Ganesh, L. S. (1994). Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages.
    European Journal of Operational Research, 79(2), 249-265.
    Roghanian, E., Rahimi, J., & Ansari, A. (2010). Comparison of first aggregation and last aggregation in fuzzy group TOPSIS. Applied Mathematical Modelling, 34,
    3754-3766.
    Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.
    Satty, T. L. (1980). Analytic Hierarchy Process, McGraw-Hill, New York.
    Szmidt, & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and
    Systems, 114(3), 505-518. Szmidt, & Kacprzyk, J. (2009, 14-17 June 2009). Ranking of intuitionistic fuzzy alternatives in a multi-criteria decision making problem. Paper presented at the Fuzzy Information Processing Society, 2009. NAFIPS 2009. Annual Meeting of the North American.
    Sönmez, M., Yang, J. B., Graham, G., & Holt, G. D. (2012). An Evidential Reasoning Based Decision Making Process for Pre-qualifying Construction Contractors.
    Journal of Decision Systems, 11(3-4), 355-381.
    Wu, Z., & Chen, Y. (2007). The maximizing deviation method for group multiple attribute decision making under linguistic environment. Fuzzy Sets and Systems, 158(14),
    1608-1617.
    Wei, G.-W. (2008). Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting. Knowledge-Based Systems, 21(8), 833-836.
    Wang, Y.-M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51(1–2), 1-12.
    Wang, J. Q., & Zhang, H. Y. (2013). Multicriteria Decision-Making Approach Based on Atanassov’s Intuitionistic Fuzzy Sets With Incomplete Certain Information on
    Weights. IEEE Transactions on Fuzzy Systems, 21(3).
    Wang, J. Q., Nie, R., Zhang, H. Y., & Chen, X. H. (2013). Intuitionistic fuzzy multi-criteria decision-making method based on evidential reasoning. Applied Soft Computing, 13, 1823-1831.
    Xu, Z. (2007a). Intuitionistic Fuzzy Aggregation Operators. Fuzzy Systems, IEEE Transactions on, 15(6), 1179-1187.
    Xu, Z. (2007b). A method for multiple attribute decision making with incomplete weight information in linguistic setting. Knowledge-Based Systems, 20(8), 719-725.
    Xu, Z. (2010). A deviation-based approach to intuitionistic fuzzy multiple attribute group decision making. Group Decision and Negotiation, 19(1), 57-76.
    Xie, X., Bao, T., Long, P., & Wei, Z. (2017). MADM method based on prospect theory and evidential reasoning approach with unknown attribute weights under intuitionistic fuzzy environment. Expert Systems With Applications, 88, 305-317.
    Yang, J. B., & Singh, M. G. (1994). An evidential reasoning approach for multipleattribute decision making with uncertainty. IEEE Transactions on Systems, Man,
    and Cybernetics, 24(1).
    Yang, J. B. (2001). Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties. European Journal of Operational Research, 131, 31-61.
    Yeh, C.-H. (2003). The Selection of Multiattribute Decision Making Methods for Scholarship Student Selection. International Journal of Selection and Assessment, 11(4), 289-296.
    Yue, Z. (2011). A method for group decision-making based on determining weights of decision makers using TOPSIS. Applied Mathematical Modelling, 35(4), 1926-1936.
    Yue, Z. (2014). TOPSIS-based group decision-making methodology in intuitionistic fuzzy setting. Information Sciences, 277, 141-153.
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
    Zeleny, M. (1982). Multiple Criteria Decision Making. Mcgraw-Hill, New York.
    Zeng, S., & Su, W. (2011). Intuitionistic fuzzy ordered weighted distance operator. Knowledge-Based Systems, 24(8), 1224-1232.

    無法下載圖示 校內:2020-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE