研究生: |
楊牧龍 Yang, Mulong |
---|---|
論文名稱: |
CH3NH3PbI3平面異質結鈣鈦礦太陽能電池的塗佈及I-V滯回效應 Deposition and I-V hysteresis of CH3NH3PbI3 perovskite on planar heterojunctioned solar cells |
指導教授: |
丁志明
Ting, Jyh-Ming |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、平面異質結構 、I-V滯回現象 、載子存活壽命 、旋轉塗佈 |
外文關鍵詞: | perovskite solar cells, planar heterojunctioned, I-V hysteresis, carrier life time, spin-coating |
相關次數: | 點閱:76 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦太陽能電池是最近三年來新興的一種高效率光伏器件。它不僅在短短三年的時間裡達到20.1%的光電轉化效率,而且由於它的製程靈活可控、成本相對低廉而吸引了全世界很多學者的關注。本研究借鑒了多種鈣鈦礦的鍍膜方法,經過嘗試,使用旋轉塗佈法獲得了較為優化的平面異質結構太陽能電池的實驗製程。本研究分為兩部分,一為鈣鈦礦薄膜的塗佈研究,二為鈣鈦礦太陽能電池的表現分析。
在第一部分中,又可分為兩個小節,一步法的配比優化和兩步法的創新探索。在一步法的優化中,研究了一步法中複雜的溶質配比對於鍍膜結果的影響,對膜層的表面形貌、結晶情況以及光學特性進行了分析總結。在兩步法的探索中,本研究參考了當前最新的鈣鈦礦膜層生長設計趨勢——分子間交換法,利用這一思路對實驗步驟進行簡化、優化,最終獲得了表面形貌及結晶情況與現有方法相若的鈣鈦礦膜層。
在第二部分中,本研究分析了前一部分若干不同鈣鈦礦薄膜製得的太陽能電池性能。不僅觀測到了鈣鈦礦太陽能電池中常見的I-V滯回現象,探討了鍍膜方式對I-V滯回現象的影響,還初步研究了不同組鈣鈦礦太陽能電池中的載子存活壽命,藉由類似的物理模型探索了鈣鈦礦太陽能電池中載子存活壽命與光強間的關聯。
The alkyl-ammonium metal trihalide perovskites are an exciting new class of solar absorber materials and have exhibited a rapid increase in solar cell efficiencies throughout the past three years to over 20%. Good quality and high orientation perovskite crystalline films were expected to less recombination and faster electron flux. Two common deposition method is utilized to assemble planar heterojunctioned perovskite solar cells, one-step solution method and two-step sequential solution method. Spin-coating is the most common depositing process of perovskite. In this work, we used a novel method to synthesized modified PbI2 film which could be used for intramolecular exchange in two-step method. And discussed the influence of different one-step recipe to perovskite thin film formation. I-V hysteresis was also investigated, finding that hysteresis phenomena fitting theoretical assumption. Intensity modulated photovoltage spectroscopy (IMVS) measurement was introduced into perovskite solar cells for carrier life time calculating. This work preliminarily discussed the impact factor of perovskite thin film deposition, I-V hysteresis and carrier life time.
1. O. Morton, Solar energy: A new day dawning?: Silicon Valley sunrise. Nature 443, 19-22 (2006).
2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (Version 45). Progress in photovoltaics: research and applications 23, 1-9 (2015).
3. M. A. Green, Silicon solar cells: evolution, high-efficiency design and efficiency enhancements. Semiconductor science and technology 8, 1 (1993).
4. J. Britt, C. Ferekides, Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters 62, 2851-2852 (1993).
5. I. Repins et al., 19• 9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81• 2% fill factor. Progress in Photovoltaics: Research and applications 16, 235-239 (2008).
6. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chemical reviews 110, 6595-6663 (2010).
7. M. Grätzel, Recent advances in sensitized mesoscopic solar cells. Accounts of chemical research 42, 1788-1798 (2009).
8. J. Bisquert, Dilemmas of Dye‐Sensitized Solar Cells. ChemPhysChem 12, 1633-1636 (2011).
9. H. J. Snaith, Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters 4, 3623-3630 (2013).
10. A. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, in Meeting Abstracts. (The Electrochemical Society, 2006), pp. 397-397.
11. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 131, 6050-6051 (2009).
12. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088-4093 (2011).
13. H. S. Kim et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2, 591 (2012).
14. A. Yella et al., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science 334, 629-634 (2011).
15. J. Burschka et al., Tris (2-(1 H-pyrazol-1-yl) pyridine) cobalt (III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Journal of the American Chemical Society 133, 18042-18045 (2011).
16. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643-647 (2012).
17. M. Liu, M. B. Johnston, H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395-398 (2013).
18. N. J. Jeon et al., Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13, 897-903 (2014).
19. N. J. Jeon et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476-480 (2015).
20. Y. Ogomi et al., CH3NH3SnxPb(1–x)I3Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters 5, 1004-1011 (2014).
21. Q. Chen et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136, 622-625 (2014).
22. H. Wei et al., Enhanced charge collection with ultrathin AlOx electron blocking layer for hole-transporting material-free perovskite solar cell. Phys Chem Chem Phys 17, 4937-4944 (2015).
23. P. Qin et al., Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun 5, 3834 (2014).
24. D. Bi, L. Yang, G. Boschloo, A. Hagfeldt, E. M. J. Johansson, Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3Perovskite-Sensitized Mesoscopic Solar Cells. The Journal of Physical Chemistry Letters 4, 1532-1536 (2013).
25. H. Zhou et al., Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science 345, 542-546 (2014).
26. D. J. Seol, J. W. Lee, N. G. Park, On the Role of Interfaces in Planar-Structured HC(NH ) PbI Perovskite Solar Cells. ChemSusChem, (2015).
27. S. Pang et al., NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells. Chemistry of Materials 26, 1485-1491 (2014).
28. N. r. e. laboratory, Best research-cell efficiencies. (2015).
29. W. S. Yang et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, aaa9272 (2015).
30. G. Rose, Beschreibung einiger neuen Mineralien des Urals. Annalen der Physik 124, 551-573 (1839).
31. H. Jin, J. Im, A. J. Freeman, Topological insulator phase in halide perovskite structures. Physical Review B 86, 121102 (2012).
32. D. B. Mitzi, K. Chondroudis, C. R. Kagan, Design, structure, and optical properties of organic-inorganic perovskites containing an oligothiophene chromophore. Inorganic chemistry 38, 6246-6256 (1999).
33. D. B. Mitzi, Templating and structural engineering in organic–inorganic perovskites. Journal of the Chemical Society, Dalton Transactions, 1-12 (2001).
34. P. P. Boix, K. Nonomura, N. Mathews, S. G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today 17, 16-23 (2014).
35. W. Forrester, R. Hinde, Crystal Structure of Barium Titanate. Nature 156, 177-177 (1945).
36. S. D. Stranks et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341-344 (2013).
37. G. Xing et al., Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344-347 (2013).
38. D. B. Mitzi, M. Prikas, K. Chondroudis, Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique. Chemistry of materials 11, 542-544 (1999).
39. K. Liang, D. B. Mitzi, M. T. Prikas, Synthesis and characterization of organic-inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chemistry of materials 10, 403-411 (1998).
40. J. H. Rhee, C.-C. Chung, E. W.-G. Diau, A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Materials 5, e68 (2013).
41. E. Edri, S. Kirmayer, D. Cahen, G. Hodes, High open-circuit voltage solar cells based on organic–inorganic lead bromide perovskite. The Journal of Physical Chemistry Letters 4, 897-902 (2013).
42. H.-S. Kim, S. H. Im, N.-G. Park, Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C 118, 5615-5625 (2014).
43. X. Xu, C. Randorn, P. Efstathiou, J. T. Irvine, A red metallic oxide photocatalyst. Nat Mater 11, 595-598 (2012).
44. Z. Cheng, J. Lin, Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering. CrystEngComm 12, 2646-2662 (2010).
45. D. Mitzi, S. Wang, C. Feild, C. Chess, A. Guloy, Conducting layered organic-inorganic halides containing< 110>-oriented perovskite sheets. Science 267, 1473-1476 (1995).
46. G. Alagona, C. Ghio, P. Kollman, Monte Carlo simulation studies of the solvation of ions. 1. Acetate anion and methylammonium cation. Journal of the American Chemical Society 108, 185-191 (1986).
47. R. t. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32, 751-767 (1976).
48. E. Gabe, The crystal structure of methylammonium bromide. Acta Crystallographica 14, 1296-1296 (1961).
49. B. N. Cohen, C. Labarca, N. Davidson, H. A. Lester, Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations. The Journal of general physiology 100, 373-400 (1992).
50. L. Jiang et al., Prediction of lattice constant in cubic perovskites. Journal of Physics and Chemistry of Solids 67, 1531-1536 (2006).
51. K. Tanaka et al., Comparative study on the excitons in lead-halide-based perovskite-type crystals CH 3 NH 3 PbBr 3 CH 3 NH 3 PbI 3. Solid state communications 127, 619-623 (2003).
52. A. Poglitsch, D. Weber, Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy. The Journal of chemical physics 87, 6373-6378 (1987).
53. T. Baikie et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. Journal of Materials Chemistry A 1, 5628 (2013).
54. J. M. Frost et al., Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano letters 14, 2584-2590 (2014).
55. D. B. Mitzi, C. Feild, W. Harrison, A. Guloy, Conducting tin halides with a layered organic-based perovskite structure. (1994).
56. C. Kagan, D. Mitzi, C. Dimitrakopoulos, Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945-947 (1999).
57. J.-H. Im, J. Chung, S.-J. Kim, N.-G. Park, Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3) PbI3. Nanoscale research letters 7, 1-7 (2012).
58. K. Kakiage, T. Kyomen, M. Hanaya, Improvement in Photovoltaic Performance of Dye-sensitized Solar Cells by Cosensitization with an Organometal Halide Perovskite. Chemistry Letters 42, 1520-1521 (2013).
59. Y. Zhao, K. Zhu, Charge transport and recombination in perovskite (CH3NH3) PbI3 sensitized TiO2 solar cells. The Journal of Physical Chemistry Letters 4, 2880-2884 (2013).
60. W. Li et al., Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. Journal of Materials Chemistry A 1, 11735-11740 (2013).
61. H. Wang et al., Boosting the Photocurrent Density of p-Type Solar Cells Based on Organometal Halide Perovskite-Sensitized Mesoporous NiO Photocathodes. ACS applied materials & interfaces 6, 12609-12617 (2014).
62. J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy & Environmental Science 6, 1739 (2013).
63. L. Etgar et al., Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc 134, 17396-17399 (2012).
64. W. A. Laban, L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy & Environmental Science 6, 3249 (2013).
65. J. J. Choi, X. Yang, Z. M. Norman, S. J. Billinge, J. S. Owen, Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells. Nano Lett 14, 127-133 (2014).
66. K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith, Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7, 1142-1147 (2014).
67. S. Bai et al., High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Research 7, 1749-1758 (2014).
68. M. He, D. Zheng, M. Wang, C. Lin, Z. Lin, High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction. J. Mater. Chem. A 2, 5994-6003 (2014).
69. G. E. Eperon et al., Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 7, 982 (2014).
70. Z. Wu et al., Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6, 10505-10510 (2014).
71. A. H. Ip et al., A two-step route to planar perovskite cells exhibiting reduced hysteresis. Applied Physics Letters 106, 143902 (2015).
72. J. Y. Jeng et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater 25, 3727-3732 (2013).
73. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, S. H. Im, Hysteresis-less inverted CH3NH3PbI3planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 8, 1602-1608 (2015).
74. J. Y. Jeng et al., Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater 26, 4107-4113 (2014).
75. C. Roldán-Carmona et al., Flexible high efficiency perovskite solar cells. Energy & Environmental Science 7, 994 (2014).
76. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, H. J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun 4, 2761 (2013).
77. J. W. Jung, S. T. Williams, A. K. Y. Jen, Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Adv. 4, 62971-62977 (2014).
78. M. H. Kumar et al., Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun (Camb) 49, 11089-11091 (2013).
79. F. Zhang et al., Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl Mater Interfaces 6, 16140-16146 (2014).
80. B.-E. Cohen, S. Gamliel, L. Etgar, Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells. Apl Materials 2, 081502 (2014).
81. S. Aharon, B. E. Cohen, L. Etgar, Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell. The Journal of Physical Chemistry C 118, 17160-17165 (2014).
82. J. Shi et al., Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property. Applied Physics Letters 104, 063901 (2014).
83. S. Aharon, S. Gamliel, B. El Cohen, L. Etgar, Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys Chem Chem Phys 16, 10512-10518 (2014).
84. A. Mei et al., A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295-298 (2014).
85. W. Ke et al., Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat Commun 6, 6700 (2015).
86. F. Matteocci et al., Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. Phys Chem Chem Phys 16, 3918-3923 (2014).
87. O. Malinkiewicz et al., Perovskite solar cells employing organic charge-transport layers. Nature Photonics 8, 128-132 (2013).
88. J. J. Wu, G. R. Chen, C. C. Lu, W. T. Wu, J. S. Chen, Performance and electron transport properties of TiO(2) nanocomposite dye-sensitized solar cells. Nanotechnology 19, 105702 (2008).
89. G. Beaucarne, Silicon thin-film solar cells. Advances in OptoElectronics 2007, (2007).
90. X. Jiang, F. Wong, M. Fung, S. Lee, Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Applied Physics Letters 83, 1875-1877 (2003).
91. T. Kim, D. Choo, Y. No, W. Choi, E. Choi, High work function of Al-doped zinc-oxide thin films as transparent conductive anodes in organic light-emitting devices. Applied Surface Science 253, 1917-1920 (2006).
92. P. Ravirajan et al., Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. The Journal of Physical Chemistry B 110, 7635-7639 (2006).
93. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Applied Physics Letters 88, 073508 (2006).
94. B. P. Rand, J. Xue, F. Yang, S. R. Forrest, Organic solar cells with sensitivity extending into the near infrared. Applied Physics Letters 87, 3508 (2005).
95. J. Cui et al., Indium Tin Oxide Alternatives—High Work Function Transparent Conducting Oxides as Anodes for Organic Light‐Emitting Diodes. Advanced materials 13, 1476-1480 (2001).
96. M. Hirasawa, T. Ishihara, T. Goto, Exciton features in 0-, 2-, and 3-dimensional networks of [PbI6] 4-octahedra. Journal of the Physical Society of Japan 63, 3870-3879 (1994).
97. S. Kazim, M. K. Nazeeruddin, M. Gratzel, S. Ahmad, Perovskite as light harvester: a game changer in photovoltaics. Angew Chem Int Ed Engl 53, 2812-2824 (2014).
98. D. Nanova et al., Unraveling the nanoscale morphologies of mesoporous perovskite solar cells and their correlation to device performance. Nano Lett 14, 2735-2740 (2014).
99. D. Liu, T. L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics 8, 133-138 (2013).
100. J. Burschka et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316-319 (2013).
101. N.-G. Park, Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry Letters 4, 2423-2429 (2013).
102. Z. Ku, Y. Rong, M. Xu, T. Liu, H. Han, Full printable processed mesoscopic CH(3)NH(3)PbI(3)/TiO(2) heterojunction solar cells with carbon counter electrode. Sci Rep 3, 3132 (2013).
103. M. Herman, M. Jankovec, M. Topič, Optimal IV curve scan time of solar cells and modules in light of irradiance level. International Journal of Photoenergy 2012, (2012).
104. H. J. Snaith et al., Anomalous Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 5, 1511-1515 (2014).
105. H. S. Kim et al., Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat Commun 4, 2242 (2013).
106. C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52, 9019-9038 (2013).
107. T. C. Sum, N. Mathews, Advancements in perovskite solar cells: photophysics behind the photovoltaics. Energy Environ. Sci. 7, 2518-2534 (2014).
108. R. Lindblad et al., Electronic Structure of TiO2/CH3NH3PbI3Perovskite Solar Cell Interfaces. The Journal of Physical Chemistry Letters 5, 648-653 (2014).
109. Y. Zhou et al., Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells. J. Mater. Chem. A 3, 8178-8184 (2015).
110. L. Peter, K. Wijayantha, Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells. Electrochimica Acta 45, 4543-4551 (2000).