| 研究生: |
許博凱 Hsu, Po-Kai |
|---|---|
| 論文名稱: |
沿著流線向兩液滴的相互作用 Interaction of Two drops along the stream direction |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 液滴碰撞 、液滴相互作用 、液滴間距 、火焰結構 、液滴蒸發率 |
| 外文關鍵詞: | Drop Collision, Drop Interaction, Drop Spacing, Flame Structure, Drop Vaporization |
| 相關次數: | 點閱:107 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以自由液滴法研究兩顆液滴在一對流環境下,流線向之相互影響性。實驗參數分別為:液滴直徑(di)、液滴初始間距(Si = s/di)、冷流場環境與熱流場環境(vg),s為兩顆液滴之中心距離,使用流體為水與十二烷。本研究主要分為水液滴在冷流場環境與熱流場環境下,流線向之相互作用,以及十二烷液滴在熱流場環境下,流線向之相互作用兩部分。
實驗結果顯示,當兩顆液滴在落下飛行的過程中,後方液滴會受到前方液滴的尾流影響,因此後方液滴的速度(v)會略大於前方液滴,並且由於阻力係數(CD)較低的因素,進而發生後方液滴追撞前方液滴的現象。此液滴追撞行為可分為同軸碰撞與非同軸碰撞,其碰撞行為模式只有碰撞黏合一種,但在熱流場環境下,有機率會觀察到液滴在黏合過程有氣泡膨脹之現象。此外,增加液滴初始間距(Si)或減少兩顆液滴雷諾數(Re)可發現液滴碰撞點(xc)位置會有延後發生的現象,但液滴初始間距(Si)的影響性比雷諾數(Re)大。
兩顆十二烷液滴在熱流場環境下,由於會有蒸發與燃燒的現象發生,因此液滴之間的相互作用與水液滴完全不同。十二烷液滴在落下飛行的過程中,沒有觀察到液滴碰撞的現象發生。這是由於液滴的火焰會使得局部環境溫度與流場對流產生變化,進而影響兩顆液滴在飛行過程的縱向與側向間距變化,以及火焰型態的轉換模式。
研究結果指出,液滴直徑(di)和液滴初始間距(Si)皆會影響到兩液滴之間的相互作用強度,但初始間距(Si)的影響性比液滴直徑(di)大。液滴的火焰轉換過程可歸納成四種模式,而液滴蒸發速率則是受到直徑、間距與火焰結構的不同而有所變化。
The interaction of two drops in the direction of the stream is studied experimentally using a free-falling drop apparatus which provides different gaseous flows, cold flow (vg = 0 - 0.5 m/s) and a hot flow (vg = 2.5 m/s). Both water and dodecane were used in the experiments, and thus there are two main parts to discuss.
Two aligned water drops moved downward in the same direction of cold and hot flow. It was found that the travelling velocity of the trailing drop was higher than that of the leading drop due to the wake effect. The merging collision process was found to the same for three different flows. However, the position of the merging collision of the drops shifted downstream of the flow with a greater initial drop spacing and higher initial gas velocity, and this weakened the wake effect. It was found that the initial drop spacing was more dominated than the initial gas velocity in this experiment.
Two aligned dodecane drops moved downward only in hot flow. The two dodecane drops were affected by the interactions among the thermal expansion, convective effect caused by the different flame structures in the combustion chamber, and exhibited four main flame transition modes. It was found that the interaction of two drops was dominated by the initial drop spacing (Si), with the initial drop diameter (di) also having an effect. The different flame structure and Reynolds number would affect the vaporization rate (k) of a leading drop or a trailing drop.
1. Faeth, G. M., “Evaporation and Combustion of Sprays,” Prog. Energy Combust. Sci., Vol. 9, p. 1-76, 1983.
2. Ashgriz, N., Givi, P. “Binary collision dynamics of fuel droplets,” Int. J. Heat Fluid Flow, Vol. 8, p. 205-210, 1897.
3. Ashgriz, N., Poo, Y. J., “Coalescence and Separation in Binary Collisions of Liquid Drops,” J. Fluid Mech., Vol. 221, p. 183-204, 1990.
4. Jiang, Y. J., Umemura, A., Law, C. K., “An Experimental Investigation on the Collision Behavior of Hydrocarbon Droplets,” J. Fluid Mech., Vol. 234, p. 171-190, 1992.
5. Qian, J., Law, C. K., “Regimes of Coalescence and Separation in Droplet Collision,” J. Fluid Mech., Vol. 331, p. 59-80, 1997
6. Chen, R. H, “Diesel–diesel and diesel–ethanol drop collisions,” Appl. Therm. Eng., Vol. 27, p. 604-610, 2007
7. Morrison, F. A., “An Introduction to Fluid Mechanics,” Cambridge University Press, 2013
8. Frank, M. W., “Viscous Fluid Flow,” McGraw-Hill International, New York, 2006
9. Sirignano, W. A., “Fluid dynamics and transport of droplets and sprays,” Cambridge University, New York, 2010
10. Ashgriz, N., “Handbook of Atomization and Sprays Theory and Applications,” Springer Dordrecht Heidelberg, 2011.
11. Taneda, S., “Experimental investigation of the wake behind a sphere at low Reynolds numbers,” J. Phys. Soc. Jpn., Vol. 11, p. 1104-1108, 1956
12. Kaviany, M., “Principles of Convective Heat Transfer,” Springer-Verlag, New York, 1995
13. Tsuji, Y., Morikawa, Y., Terashima, K., “Fluid-dynamic Interaction between Two Spheres,” Int. J. Multiphase Flow, Vol. 8, p. 71-82, 1982.
14. Lee, K. C., “Aerodynamic interaction between two spheres at Reynolds numbers around 104,” Aeronautical Quarterly, Vol. 30, p. 371-385, 1979.
15. Cataneo, R., Adam, J. R., Semonin, R. G., “Interactions Between Equal-Sized Droplets Due to the Wake Effect,” J. Atmos. Sci., Vol. 28, p. 416-418, 1971.
16. Zhu, C., Liang, S.-C., Fan, L.-S., “Particle Wake Effects on the Drag Force of an Interactive Particle,” Int. J. Multiphase Flow, Vol. 20, p. 117-129, 1994
17. Zhang, J., Zhang, J. P., Fan, L.-S., “Effect of Particle Size Ratio on the Drag Force of an Interactive Particle,” Institution of Chemical Engineers, Vol. 83, p. 339-343, 2005
18. Lee, D., Kim, H. Y., Yoon, S. S., and Cho, C. P., “Group combustion of staggeringly arranged heptane droplets at various Reynolds numbers,” oxygen mole-fractions, and separation distances, Fuel, Vol. 89, p.1447-1460, 2010
19. Spalding, D. B., “The burning of liquid fuels,” Proc. Combust. Inst., Vol. 4, p. 847, 1953.
20. Godsave, G. A. E., “Studies of the combustion of drops in a fuel spray: the burning of single drops of fuel,” Proc. Combust. Inst., Vol. 4, p. 818, 1953.
21. Goldsmith, M., Penner, S. S., “On the burning of single drops of fuel in an oxidizing atmosphere,” Jet Propulsion, Vol. 24, p. 245, 1954.
22. Wise, H., Lorell, J., Wood, B. J., “The effects of chemical and physical parameters on the burning rates of a liquid droplet,” Proc. Combust. Inst., Vol. 5, p. 132, 1955.
23. Ogami, Y., Sakurai, S., Hasegawa, S., Jangi, M., Nakamura, H., Yoshinaga, K. and Kobayashi, H., “Microgravity experiments of single droplet combustion in oscillatory flow at elevated pressure,” Proc. Combust. Inst., Vol. 32, p. 2171-2178., 2009
24. Umemura, A., Takamori, S., “Percolation theory for flame propagation in non-or less-volatile fuel spray: a conceptual analysis to group combustion excitation mechanism,” Combust. Flame, Vol. 141,pp. 336, 2005.
25. Kikuchi, M., Wakashima, Y., Yoda, S., Mikami, M., “Numerical study on flame spread of an n-decane droplet array in different temperature environment under microgravity,” Proc. Combust. Inst., Vol. 30, p. 2001-2009, 2005
26. Mikami, M., Oyagi, H., Kojima, N., Wakashima, Y., Kikuchi, M., Yoda, S., “Microgravity experiments on flame spread along fuel-droplet arrays at high temperatures,” Combust. Flame, Vol. 146, p. 391-406, 2006.
27. Nomura, H., Suganuma, Y., Setani, A., “Microgravity experiments on droplet motion during flame spreading along three-fuel-droplet array,” Proc. Combust. Inst., Vol. 32, p. 2163-2169, 2009.
28. Mikami, M., Kato, H., Sato, J., Kono, M., “Interactive combustion of two droplets in microgravity,” Proc. Combust. Inst., p. 431-438, 1994.
29. Chiu, H. H., Liu, T. M., “Group combustion of liquid droplets,” Combust. Sci. Technol., Vol. 17, p. 127-142, 1977.
30. Roth, N., Karl, A., Anders, K., Frohn, A., “Flame propagation in planar droplet arrays and interaction phenomena between neighboring droplet streams,” Proc. Combust. Inst., Vol. 26, p. 1697-1703, 1996.
31. Sangiovanni, J. J., Kesten, A. S., “Effect of droplet interaction on ignition in monodispersed droplet streams,” Proc. Combust. Inst., Vol.16, p. 577-592, 1977.
32. Sangiovanni J. J., Labowsky, M., “Burning times of linear fuel droplet arrays a comparison of experiment and theory,” Combust. Flame. Vol. 47, p. 15-30, 1982.
33. Cho, C. P., Kim, H. Y., and Yoon, S. S., “Interaction of the burning spherical droplets in oxygen-enriched turbulent environment,” Combust. Flame, Vol. 156, p. 14-24, 2009.
34. Lee, D., Kim, H. Y., Yoon, S. S., Cho, C. P., “Group combustion of staggeringly arranged heptane droplets at various Reynolds numbers,” oxygen mole-fractions, and separation distances, Fuel, Vol. 89, p. 1447-1460, 2010.
35. Law, C. K, “Recent advances in droplet vaporization and combustion, Prog. Energy Combust. Sci.,” Vol. 8, p. 171-201, 1982.
36. Law, C. K., “Combustion physics, Cambridge University, New York, 2006.
37. Miyasaka, K., Law, C. K., “Combustion of strongly-interacting linear droplet arrays,” Proc. Combust. Inst., Vol. 18, p. 283-292, 1981.
38. Xiong, T. Y., Law, C. K., Miyasaka,K., “Interactive vaporization and combustion of two droplet systems,” Proc. Combust. Inst., Vol. 20, p. 1781-1787, 1985.
39. Brzustowski, T. A., Twardus, E. M., Wojcicki, S., and Sobiesiak, A., “Interaction of Two Burning Fuel Droplets of Arbitrary Size, ” AIAA, Vol. 17, p. 1234-1242, 1979
40. Chen, W. H., Liu, C. C., and Jiang, T. L., “Hysteresis Effects of Two Equal-Sized Droplets Burning in Convective Flows,” Proc. Combust. Inst., Vol. 27, p. 1923-1932, 1998
41. Wu, G., Sirignano, W. A., “Transient convective burning of interactive fuel droplets in double-layer arrays,” Combust. Flame, Vol. 158, p. 2395-2407, 2011
42. Chen, C. K., and Lin T. H., “Streamwise Interaction of Buring Drops,” Combust. Flame, Vol.159, p. 1971, 2012
43. Chen, C. K., “Streamwise Interaction of Buring Pure/Compound Drops,” National Cheng Kung University, Unpublished Doctor Dissertation, Department of Mechanical Engineering National Cheng Kung University, 2012
44. Depredurand, V., Castanet, G., Lemoine, F., “Heat and mass transfer in evaporating droplets in interaction: Influence of the fuel,” Int. J. Heat Mass Transfer, Vol. 53, p. 3495, 2010.
45. Gao, T. C., “Droplets-collision analysis and droplet-generator development,” Unpublished Master Dissertation, Department of Mechanical Engineering National Cheng Kung University, 1999.
46. Tal (Thau), R., Lee, D. N., and Sirignano, W. A., “Heat and Momentum Transfer around a Pair of Spheres in Viscous Flow,” Int. J. Heat Mass Transfer, Vol. 27, p. 1953-1962, 1984
47. Van Boxel, J. H., “Numerical Model for the Fall Speed of Rain Drops in a Rain Fall Simulator,” Workshop on Wind and Water Erosion, p. 77-85, 1997.
48. Faeth, G. M., “Current status of droplet and liquid combustion,” Prog. Engery Combust. Sci., Vol. 3, p. 191, 1977.
49. Incropera, F. P., Dewitt, D. P., Bergman, T. L., Lavine, A. S., “Fundamentals of heat and mass transfer,” John Wiley & Sons, United States of America, 2007
50. Hsieh, W. D., Lin, S. Y., Chen, R. H., Lin, T. H., “Burning behavior of gas-in-oil compound drops,” Combust. Sci. Technol., Vol. 183, p. 51-61, 2011
51. Van Dyke, M., “An Album of Fluid Motion,” Parabolic Press, Stanford, CA, 1982.
校內:2024-01-01公開