簡易檢索 / 詳目顯示

研究生: 洪貫庭
Hong, Guan-Ting
論文名稱: 奈米銀粒於改質之聚丙烯腈膜板上形成機制的探討
Study on the mechanism of nanosilver particles on the modified PAN template
指導教授: 陳志勇
Chen, Chuh-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 74
中文關鍵詞: 銀奈米粒子聚丙烯腈化學還原法羥胺
外文關鍵詞: polyacrylonitrile, nanosilver, chemical reduction, hydroxylamine
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究係利用羥胺(NH2OH, hydroxylamine)改質聚丙烯腈纖維(polyacrylonitrile fiber, PAN fiber),形成具有amidoxime之螯合官能基的polyacryloamidoxime fiber,簡稱PAAm fiber。由FT-IR分析改質前後纖維的光譜圖變化,並以EA、AA測其改質率及螯合量。將改質後的PAAm fiber 螯合Ag+並以化學還原法還原Ag+使其形成PAAm-Ag奈米複合纖維。由SEM觀察PAAm-Ag 纖維表面可以得到平均粒徑為23nm~30nm之間的奈米銀顆粒,並可由pH值及溫度加以控制其成長分佈。
      此外本研究亦以DMF溶劑將PAN fiber溶解後成膜,得到PAN membrane,以相同方法將PAN薄膜改質為PAAm membrane。PAAm membrane螯合Ag+後,以UV-vis吸收光譜研究隨著還原劑濃度、pH值及還原溫度的不同其奈米銀粒子於高分子薄膜基材上之成長機構,並以TEM及SEM觀察奈米銀粒於薄膜內部及表面的粒徑大小分佈情況。於不同還原條件下,反應初期皆可以發現在350nm附近有UV吸收,以TEM觀察薄膜內部,發現無奈米粒子形成,此奈米銀成長階段應為產生銀原子團簇,並未形成奈米銀粒子,直到達某一反應時間下,才漸漸有吸收峰的形成,以TEM觀察亦可證明此奈米粒顆粒的形成。另外於低的pH值下隨著還原劑濃度增加,銀粒子平均粒徑增大但粒徑分佈變得較為狹窄。而內部平均粒徑由4.9nm升至6.2nm,且UV-vis吸收於425nm附近開始有吸收;當pH值增加至鹼性,還原速率增加快速,導致大量還原且奈米粒子開始凝聚在一起。當還原溫度至60℃,還原開始時奈米銀會產生雙分佈,隨著時間增長則此現象消失。本研究亦提出其它還原條件下影響銀奈米成長機構。

      The polyacrylonitrile fiber(PAN fiber) was modified by hydroxylamine solution to form polyacryloamidoxime fiber (PAAm fiber). FT-IR was used to analyze the modified condition of PAAm fiber, and then, element analyzer(EA) was used to measure the modification rate of PAAm fiber. Amount of silver ions chelated by the PAAm fiber could be determined by Atomic absorption(AA) spectrophotometer. Chelated silver ions of the PAAm fiber were reduced via chemical reduction method to form PAAm-Ag nanocomposite fiber in this study. The average particle size on the PAAm-Ag fiber which observed by SEM was in the range of 23nm and 30nm which could be controlled by different pH values and reducing temperatures.
      In addition, the mechanism of growing nanoparticles on polymer membrane was observed by the UV-vis absorbance. TEM and SEM could determine the distribution of particle sizes on the surface and inside the polymer membrane. UV-vis absorbance near 350nm was appeared in the initial stage of different reducing condition, but no any nanoparticles appeared in this stage after TEM measurement. Thus, the absorbance was due to the formation of silver clusters, not silver nanoparticles. The average particle size increased and the size distribution became narrowed in low pH value. Particle size inside polymer membrane was from 4.9nm to 6.2nm, and there was a 425nm absorption peak. When the pH value of reaction aqueous is controlled at basic, it caused the nanoparticles to aggregate. Furthermore, as the reducing temperature increased to 60℃, the double distribution of the nanoparticles would be appeared. The mechanism of growing nanoparticles in other reducing conditions will also discussed in my research.

    中文摘要 I 英文摘要 II 誌謝 IV 總目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 文獻回顧 3 2-1奈米材料的特殊性質 3 2-2奈米材料的應用 7 2-3金屬奈米粒子製備方法 8 2-3-1物理製備法 8 2-3-2化學製備法 10 2-4化學還原法 11 2-4-1保護劑之影響 12 2-4-2銀奈米粒子製備方法 13 2-5銀奈米粒子的應用 16 2-6金屬奈米粒子鑑定之基礎-表面電漿共振吸收 17 2-7螯合型高分子 18 第三章 實驗內容 21 3.1實驗藥品 21 3.2儀器設備 21 3.3實驗步驟 22 3.3.1PAN纖維部份 22 3.3.2PAN薄膜部份 23 3-4實驗流程圖 25 3.5分析方法 26 第四章 結果與討論 28 4.1FT-IR鑑定分析 28 4-1-1PAN纖維組成的鑑定 28 4-1-2polyacryloamidoxime fiber (PAAm fiber) 28 4-1-3polyacryloamidoxime membrane (PAAm membrane) 29 4-2EA鑑定分析 30 4-3銀離子螯合量測定 30 4-4XRD晶形鑑定 31 4-5含銀奈米複合纖維之成長機制 32 4-5-1同濃度不同pH值之UV-visible吸收 33 4-5-2同pH值不同濃度之UV-visible吸收 35 4-5-3同pH值濃度不同溫度下之UV-visible吸收 36 4-6薄膜表面成長 38 第五章結論 40 參考文獻 73 自述

    1. 林育右, 成功大學化學工程系碩士論文, 民國91年.
    2. S. J. Miyake, and R. Kubo, Phys. Rev. Lett., 9, 62(1962).
    3. C. G. Granqvist, and R. A. Buhrman, J. Appl. Phys., 47, 2200(1976).
    4. 馬遠榮,“奈米科技”, 商周出版, 2002年.
    5. P. Buffat, and J. P. Borel, Phys Rev., 1976, A 13, 2287.
    6. 廖建勛, ”奈米材料的發展動態”, 化工資訊, 12(2), 1998.
    7. C. M. Mo, and Z. Yuan, L. D. Zhang, Nanostructured Mater., 2, 113(1993).
    8. P. Ball, and L. Garwin, Nature, 355, 761(1992).
    9. H.Yoneyama, Crit. Rev. Solid State Mater. Sci., 18, 69(1993).
    10. D. W. Bahneman, J. Phys. Chem., 98, 1025(1994).
    11. A. Scott, Chemical Week , 45, December 4 , 2002.
    12. 史宗淮, “微粉製程技術簡介”, 化工, 42(6),28 (1995).
    13. 牟中原,陳家俊, “奈米材料研究發展”,科學發展月刊, 28, 281.
    14. 張立德, 牟季美, “奈米材料和奈米結構”,滄海書局,2002.
    15. M. Faraday., Philosophical Magazine, 3,216(1857).
    16. D. V. Goia, and E. Matijevic, New J. Chem., 1203(1998).
    17. T. Leisner, C. Rosche, S. Wolf, F. Granzer, and L. Wöste, Surf. Rev. Lett., 3, 1105(1996).
    18. J. Zheng, M. S. Stevenson, R. S. Hikida, and P. G. Van Patten, J. Phys. Chem. B, 106, 1252(2002).
    19. R. Patakfalvi , A. Oszko´, and I. De´ka´ny, Colloids and Surfaces A: Physicochem. Eng. Aspects, 220, 45(2003).
    20. D. G. Li, S. H. Chen, S. Y. Zhao, X. M. Hou, H. Yi., and X. G. Yang, Appl. Surface Science, 200, 62(2002).
    21. G. Carotenuto, Appl. Organometal. Chem., 15, 344(2001).
    22. P. S. Isabel, and M. L. M. Luis, Pure Appl. Chem., 72, 83.
    23. S´andor K´eki, J´anos T¨or¨ok, Gy¨orgy De´ak, Lajos Dar´oczi, and Mikl´os Zsuga, J. Colloid and Interface Science, 229, 550(2000).
    24. C. Lu, S. Bai, D. Zhang, L. Huang, J. Ma, C. Luo, and W. Cao1, Nanotechnology, 14, 680(2003).
    25. Z. Zhang, L. Zhang, S. Wang, W. Chen, and Y. Lei, Polymer, 42, 8315(2001).
    26. Z. Zhang, and M. Han, J. Mater. Chem., 13, 641(2003).
    27. F. Mafune´, J. Kohno, Y. Takeda, and T. Kondow, J. Phys. Chem. B, 104,8333(2000).
    28. 郭清癸, 黃俊傑, 牟中原, “金屬奈米粒子的製造”, 物理雙月刊, 23, 614(2001).
    29. 王崇人,“神奇的奈米科學”, 科學發展, 354, 48(2002).
    30. B. W. Zhang, K. Fischer, D. Bieniek, and Kettup, React. Polym., 20, 207(1993).
    31. M. L. Hassan, and N. A. El-Wakil, J. Appl. Polym. Sci., 87,666(2003).
    32. S. H. Choi, and Y. C. Nho, Radiation Physics and Chemistry, 57, 187(2000).
    33. P. Nursel, N. Sahiner, and G. Olgun, J. Polym. Sci.: Part B: Polym. Phys., 42, 986 (2004).
    34. Naeem M El-Sawy, Polym. Int., 49, 533(2000).
    35. P. Nursel, S. Nurettin, Ahiner, and G. Olgun, J. Polym. Sci.: Part B: Polym. Phys.,42, 986(2004).
    36. S. H. Choi., and Y. C. Nho, Radiation Phys. Chem., 57, 187(2000).
    37. M. E. McComb, and H. D. Gesser, Analytica Chemica Acta, 341, 229(1997).
    38. G. Moroi, D. Bîlbã, and N. Bâlbã, Polym. Degradation and Stability, 72, 525(2001).
    39. Sayed M. Badawy, Radiation Phys. Chem., 66, 67(2003).
    40. L. V. Dorine, A. P. Joop, C. K. Hennie, W.C. R. Harry, and V. B. Herman, Carbohydrate Polym., 37, 209(1998).
    41. R. Mendez, K. Usha, K. K. Mohammed Yussuf, and V. N. S. Pillai, Eur. Polym. J., 32, 515(1996).
    42. B. W. Zhang, K. Fischer, D. Bieniek, and Kettup, React. Polym., 24, 49(1994).
    43. R. Liu, Y. Li, and H. Tang, J. Appl. Polym. Sci., 74, 2631(2003).
    44. H. R. Liu, X. W. Ge, Y. H. Ni, Q. Ye, and Z. H. Zhang, Radiation Phys. Chem., 61, 89(2001).
    45. C.E. Roman, C. Noguez, and R. G. Barrera, Phys. Rev. B, 61, 10427(2000).
    46. Mulvaney, and A. Henglein, J. Phys. Chem., 94, 4182(1990).
    47. P. S. Isabel, and M. L. M. Luis , Langmuir, 15, 948(1999).
    48. 陳韋甫, 成功大學化學工程系碩士論文, 民國92年.
    49. T. Ung, M. Giersig, D. Dunstan, and P. Mulvaney, Langmuir, 13, 1773(1997).
    50. 陳志彥, 成功大學化學工程系博士論文, 民國91年.

    無法下載圖示 校內:2054-06-18公開
    校外:2054-06-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE