簡易檢索 / 詳目顯示

研究生: 達羅妮班妲拉
Bandharla, Dharani
論文名稱: 用於垂直風機之J型葉片最佳化設計:數值模擬與風洞實驗
Optimal Design of the J-Shaped Blade for VAWT: Numerical Simulation and Wind Tunnel Test
指導教授: 夏育群
Shiah, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 121
中文關鍵詞: J 型葉片 2D 模擬3D 模擬 田口法VAWT
外文關鍵詞: J-shaped blade, 2D simulations, 3D simulation, Taguchi method, VAWTs
相關次數: 點閱:50下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了垂直軸風力渦輪機(VAWT)的實驗與計算性能,以提高功率效率並優化葉片氣動特性,使用了一種獨特的設計——葉片尾緣處的開口。這些葉片稱為 J 型葉片,通過田口方法進行優化,用以設計數值實驗,以確定包括開口比、弦長和葉片厚度在內的最佳幾何參數組合。
    在本研究中,對風力渦輪機最佳設計的 2D 模擬和 3D 模擬結果進行了比較,並分析了傳統和 J 型葉片 VAWT 的力矩和功率係數。雖然進行了 2D 和 3D 模擬,但結果顯示兩者之間的差異非常小。數值結果表明,J 型葉片 VAWT 在低風速下相比傳統葉片能產生更多的功率。此外,J 型葉片還顯示出改進的自啟動穩定性。
    當與 3D 數值結果相比較時,發現基線葉片在 416 RPM 下達到了最大功率係數(CP )0.122,而 J-NACA0018 葉片在 445 RPM 下達到了 CP 0.116。儘管最佳參數葉片的最大 CP值低於基線,但它在低風速下表現出更高的扭矩。風洞實驗結果與模擬結果之間的微小差異表明,最佳設計可以在低轉速和較低的 TSR 下提高葉片扭矩和功率係數。然而,優化葉片、基線 VAWT 和 J-NACA0018 葉片之間的 CP 差異很小。這表明 J 型葉片相比優化基線葉片,可能會增加或減少功率或扭矩。

    This study investigates the experimental and computational performance of vertical axis wind turbines (VAWTs) to enhance power efficiency and optimize blade aerodynamics using a distinctive feature—an opening at the blade's trailing edge. These blades, termed J-shaped blades, were optimized using the Taguchi method, which was employed to design numerical experiments aimed at identifying the optimal set of geometric parameters, including opening ratio, chord length, and blade thickness.
    In this research, the 2D simulations and 3D simulation results of the optimal design of wind turbines are compared to each other, and the moment and power coefficients were analyzed for both conventional and J-shaped blade VAWTs. Although both 2D and 3D simulations were performed, the results show that the difference between them is very small. The numerical findings indicate that J-shaped blade VAWTs generate more power at low wind speeds compared to conventional blades. Additionally, the J-shaped blades exhibit improved self-starting stability.

    When 3D numerical results compared with reveals that the baseline blade achieved a maximum power coefficient (CP) of 0.122 at 416 RPM, while the J-NACA0018 blade reached a CP of 0.116 at 445 RPM. Although the blade with optimal parameters has a lower maximum CP value than the baseline, it exhibits higher torque at lower wind speeds. experimental results The slight difference between the wind tunnel experimental results and the simulation results suggests that the optimal design can improve both blade torque and power coefficient at low rotational speeds and lower TSR. However, the difference in CP between the optimized blade, baseline VAWT, and J-NACA0018 blade is minimal. This indicates that the J-shaped blade can either increase or decrease power or torque compared to the optimized baseline blade.

    ABSTRACT IN CHINESE. i ABSTRACT ii ACKNOWLEDGEMENTS iv CONTENTS v LIST OF TABLES vii LIST OF FIGURES viii NOMENCLATURE xi CHAPTER I INTRODUCTION 1 1.1 Historical Description 1 1.2 Wind Energy 1 1.3. Types of Wind Turbine 1 1.3.1 Horizontal Axis Wind Turbine 2 1.3.2 Vertical Axis Wind Turbine 2 1.4 Literature Review 4 CHAPTER II THEORY OF VERTICAL AXIS WIND TURBINES 11 2.1 Aerodynamic Forces Diagram. 11 2.1.1 Tip Speed Ratio() 16 2.1.2 Angle of Attack() 16 2.1.3 Blade Pitch Angle() 17 2.1.4 Rotor Power Coefficient (Cp) 17 2.2 Motivation for Research 18 2.3 Scope of Research 19 2.4 Objectives of the Research 20 CHAPTER III RESEARCH METHODS AND EXPERIMENTAL APPARATUS 21 3.1 Airfoil Characteristics 21 3.2 Taguchi Method. 22 3.3 Experiment Arrangement 26 3.3.1 Wind Tunnel 26 3.3.2 Experimental Test Model 30 3.3.3 Experimental Test Equipment. 31 CHAPTER IV NUMERICAL SIMULATION 38 4.1 Governing Equations 38 4.2 Turbulence Model 39 4.3 Numerical Simulation of NACA0018 Airfoil 40 4.3.1 2D Simulation for Baseline Airfoil 40 4.4 Numerical Simulation of VAWT 46 4-5 Mesh 48 4.6 Blade Profiles. 53 4.7 Setting Up Boundary Conditions 54 4.8 Calculating Timestep 55 4.9 Solver Setup Processing 57 CHAPTER V SIMULATION RESULTS AND WIND TUNNEL TEST DATA 61 5.1 Numerical Simulation Results of VAWT Efficiency at Different AoA 61 5.2 Numerical Simulation Results of VAWT Efficiency for Distinct Blade 63 5.3 Numerical Simulation Results of the Taguchi Method 65 5.3.1 S/N Ratios Response Table and Response Graph 68 5.3.2: Analysis of variance 70 5.3.3 Cp Simulation Results of Taguchi method: 72 5.3.4 Dimensionless Analysis of Variance 76 5.3.5 Confirmation Run 78 5.4 Numerical Simulation of 3D Wind Turbine. 83 5.5 Wind Tunnel Experimental Results 93 CHAPTER VI CONCLUSION AND FUTURE WORK 101 REFERENCES 104

    1. Global Energy Transformation: A Roadmap to 2050 (2019) Edition International Renewable Energy Agency
    2. Wtshymanski. Wind power. Wikipedia. 2024.
    3. Tolga K., Şahin.A.D. Implications of Climate Change on wind energy potential. Sustainability.2023.15(20):14822
    4. Sowmya.T, Ankit.B. HAWT for Power Generation. International Journal of Engineering and Management Research. 2013 Aug;3(4):43–7.
    5. Dinesh.E.A., Nandita.H. Review Paper: Overview of the vertical Axis Wind Turbine. International Journal of Scientific Research and Innovative Technology. 2017 Aug;4(8):56–67.
    6. Heejeon I., Bumsuk K., Power Performance Analysis Based on Savonius Wind Turbine Blade Design and Layout Optimization through Rotor Wake Flow Analysis. Energies. 2022 Dec 14;15(24).
    7. Brian H., Ger K., Aerodynamic Design and Performance Parameters of a Lift-type Vertical Axis Wind Turbine: A Comprehensive Review. Renewable and Sustainable Energy Reviews. 2021 Jan 21;139.
    8. Abdolrahim. R, Hamid. M. Characterization of Aerodynamic Performance of Vertical Axis Wind Turbines: Impact of Operational Parameters. Energy Convers Manag. 2018 Aug 1; 169:45–77.
    9. Saravana.M, Nagaraj.A. Design and Fabrication of Combined Savonius and Darrieus Wind Turbine. International Research Journal of Engineering and Technology (IRJET). 2023 Mar;10(3):1061–9.
    10. Javier C., Small-Scale Vertical Axis Wind Turbine Design [Internet]. Degree program in Aeronautical Engineering; 2011 [cited 2024 May 15]. Available from: https://upcommons.upc.edu/bitstream/handle/2099.1/19136/memoria.pdf;sequence=4
    11. Xuejing S, Jianyang Z. Effects of Blade Shape and its Corresponding Moment of Inertia on Self-Starting and Power Extraction Performance of the Novel Bowl-Shaped Floating Straight-Bladed Vertical Axis Wind Turbine. Sustainable Energy Technologies and Assessments. 2020 Apr; 38:100648.
    12. Mohamed M., Derek B. CFD Analysis of the Angle of Attack for a Vertical Axis Wind Turbine Blade. Energy Convers Manag. 2019 Jan 3; 182:154–6.
    13. Hayder S., Adel.M. High Power Output Augmented Vertical Axis Wind Turbine. Fluids. 2023 Jan 16;8(2).
    14. Abdolrahim.R, Ivo Kalkman. Effect of Pitch Angle on Power Performance and Aerodynamics of a Vertical Axis Wind Turbine. Appl Energy. 2017 Apr 31; 197:132–50.
    15. Wenhao X, Wenhao, Fuxin. High-resolution Numerical Investigation into the Effects of Winglet on the Aerodynamic Performance for a Three-Dimensional Vertical Axis Wind Turbine. Energy Convers Manag. 2020 Feb 1; 205:112333.
    16. Scheurich. F, Timothy M., Brown.R. The Influence of Blade Curvature and Helical Blade Twist on the Performance of a Vertical-Axis Wind Turbine. In: 29th ASME Wind Energy Symposium, [Internet]. Orlando; 2010 [cited 2024 May 15]. Available from: https://strathprints.strath.ac.uk/27341/
    17. M. Jason, Didane DH. 2D CFD Simulation Study on the Performance of Various NACA Airfoils. CFD Letters. 2021 May 2;13(4):38–50.
    18. Tiantian Z., Zhenguo W., A blade configuration study of vertical axis wind turbines using a CFD approach. 8 The European Conference for Aeronautics and Aerospace Sciences (EUCASS),2019.
    19. Ivan Rabei. The performance of Different Vertical Axis Wind Turbine with J- Shaped Blades. Journal of Engineering Science. 2020 May 4; XXVII (2):24–36.
    20. Ramin F., Bazargan M., 3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mod., energy .,278:2023 sep ,128040
    21. M.H. Mohamed . Criticism Study of J-Shaped Darrieus Wind Turbine: Performance Evaluation and Noise Generation Assessment. Energy.2019 Jun 15:177:367-385.
    22. Zamani M, Maghrebi MJ. Starting Torque Improvement Using J-Shaped Straight-Bladed Darrieus Vertical Axis Wind Turbine by Means of Numerical Simulation. Renewable Energy. 2016 Sep; 95:109–26.
    23. M.H. Mohamed . Criticism Study of J-Shaped Darrieus Wind Turbine: Performance Evaluation and Noise Generation Assessment. Energy.2019 Jun 15:177:367-385.
    24. Zamani M, Nazar. S., Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine. Energy.2016 Dec.,1243-1255.
    25. Lin Pan, Ze Zhu, Xiao H. Numerical Analysis and Parameter Optimization of J-Shaped Blade on Offshore Vertical Axis Wind Turbine. Energies. 2021 Oct 8;14(6426).
    26. Castelli.M.R, Englaro.A. The Darrieus Wind Turbine: Proposal for a new Performance Prediction Model Based on CFD. Energy. 2011 Aug;36(8):4919–34.
    27. García A.A, Santoso RE, Mohan H. CFD-Based J-Shaped Blade Design Improvement for Vertical Axis Wind Turbines. Sustainability. 2022 Nov;14(22):15343.
    28. N. Durrani, H. Hameed, H. Rahman. A Detailed Aerodynamic Design and Analysis of a 2-D Vertical Axis Wind Turbine Using Sliding Mesh in CFD. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011 Jan 4;1926–39.
    29. Yunus C., Derek I., Design and aerodynamic performance analyses of the self-starting H-type VAWT having J-shaped Aerofoils considering various design parameters using CFD.Energy.251:2022 Jul :123881.
    30. Das.A, Pradip Kumar T. Modelling and Analysis of a Mini Vertical Axis Wind Turbine. International Journal of Emerging Technology and Advanced Engineering. 2016 Jun;6(6):184–94.
    31. Prince Deep. CFD Investigations of Vertical Axis Wind Turbine [Master Thesis]. [Hamburg]: HAW Hamburg; 2019.
    32. T. G. Abu-El-Yazied, A.M. Ali, M. S. Al-Ajmi a. Effect of Number of Blades and Blade Chord Length on the Performance of Darrieus Wind Turbine. American Journal of Mechanical Engineering and Automation. 2015 Jan 30;2(1):16–25.
    33. NACA 4-Digit Airfoil Generator (NACA 0018 AIRFOIL).
    34. 李輝煌,“田口方法:品質設計的原理與實務”,高麗圖書有限公司出版 2008年. An Aerodynamic Model’, Physical Review Letters. 2008;100(5).
    35. Zhang.J, Wang .C, Wenhao. L. Optimization of the Energy Capture Performance of the Lift-Drag Hybrid Vertical-Axis Wind Turbine Based on the Taguchi Experimental Method and CFD Simulation. Sustainability. 2023 May 31;15(11):8848.
    36. Qasemi K, Azadani L.N. Optimization of the Power Output of a Vertical Axis Wind Turbine Augmented with a Flat Plate Deflector. Energy. 2020 Jul 1; 202:117745.
    37. Shiah YC, Chang CH, Chen YJ. Canard Optimization for Enhancing the Performance of Small Horizontal Axis Wind Turbine at Low Wind Speeds. Journal of Mechanics. 2020 Aug 5; 37:63–71.
    38. Kao YM. Calibration of the ABRI Environment Wind Tunnel and Experimental Study of 2-D Bluff-Body Aerodynamic Flows. Master of Science Thesis. 2005;1–141.
    39. Trisakti M, Halim L, Arthaya BM. Power Coefficient Analysis of Savionus Wind Turbine Using CFD Analysis. 2019 International Conference on Mechatronics, Robotics, and Systems Engineering (MoRSE). 2019 Dec 4;24–9.
    40. Chen YJ, Design, Simulation and Experiment on the performance of Small Scale Horizontal Axis Wind Turbine Systems.
    41. Shiah YC, Miao J, J.Chen. Experimental and Numerical Studies of Torque and Power Generation in a Vertical Axis Wind Turbine. National Cheng Kung University. 2009.
    42. FLUENT 6.3, User Guide, FLUENT Incorporated. 2006;
    43. ANSYS Inc. ANSYS FLUENT,"ANSYS Fluent 14.0 Theory Guide,". 2011;
    44. 4.5.2: Shear stress Transport (SST) k- model. ANSYS Inc. ANSYS FLUENT,2.0 Theory Guide"2009.
    45. 4.4.4 :Modeling Turbulent production in k- models. ANSYS Inc. ANSYS FLUENT,
    1. Theory Guide”2009.
    46. Mohamed S, Ibrahim A, Etman A. Numerical Investigation of Darrieus Wind Turbine with Slotted Airfoil Blades. Energy Conversion and Management: X. 2020 Jan; 5:100026.
    47.
    48. Mohamed. M.H., Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy.2012 Sep 30:47:522-530
    49. Satrio D, Utama I, Pria KA. The influence of time step setting on the CFD simulation result of vertical axis tidal current turbine. Journal of Mechanical Engineering and Sciences. 2018 Mar;12(1):3399-3409.
    50. Chen WH, Chen CY, Huang CY. Power Output Analysis and Optimization of Two Straight-Bladed Vertical-Axis Wind Turbines. Applied Energy. 2017 Jan 1; 185:223-232.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE