簡易檢索 / 詳目顯示

研究生: 戴薇
S, Devy Setiorini
論文名稱: 以同步熱重串接傅利葉紅外線光譜分析探討稻桿與稻殼之熱解與富氧燃燒特性
TG-FTIR Study on Pyrolysis and Oxy-combustion Characteristics of Rice Straw and Husk
指導教授: 吳明勳
Wu, Ming-Hsun
林大惠
Lin, Ta-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 102
外文關鍵詞: TG-FTIR, rice straw, husk, pyrolysis, combustion, oxy-combustion, characteristics, kinetics, SEM-EDS
相關次數: 點閱:117下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This study has been focused on pyrolysis and combustion characteristics of rice straw and husk by using Thermogravimetric-Fourier Transform Infrared (TG-FTIR) analysis. Observation of thermal degradation during heating process such as drying , devolatilization of char-combustion process can be observed by TG curve (weight percentation) and DTG curve (weight loss percentation). The heat flow also can be investigated since the thermogravimetric instrument in this study was coupled with differential scanning calorimetry (DSC). Furthermore, gas released during heating process observed by FTIR. In additional, residual from both pyrolysis and combustion experiment is observed using SEM-EDS analysis.
    Pyrolysis experiments in this study include N2 and CO2 environment. While for combustion there are four cases. Air combustion as the base case and oxy-fuel combustion: 21%O2/79%CO2, 30%O2/70%CO2, and 35%O2/65%CO2 were performed. Pyrolysis and combustion characteristics were obtained from thermogravimetric analysis. The additional combustion performance indices were performed in order to have better observation for combustion experiments especially in oxy-fuel combustion cases.
    Overall, both rice straw and husk pyrolysis experiment shows that in CO2 environment there is additional stage after 7500C is due to char-CO2 gasification. Activation energy in CO2 pyrolysis higher than N2 pyrolysis. While in oxy-fuel combustion cases, the replacement of N2 by CO2 will delay the char combustion to higher temperature, but after increasing oxygen in oxy-fuel combustion the combustion characteristics and indices will increase, which means it has better combustion.

    Abstract ii Acknowledgement iii Contents iv List of Tables vii List of Figures ix Nomenclature xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.3 Objectives 9 1.4 Thesis Outline 9 Chapter 2 Methodology 11 2.1 Sample Preparation 11 2.2 Experiment Configuration 12 2.2.1 Thermogravimetric Analysis 15 2.2.2 Differential Scanning Calorimetry 17 2.2.3 Fourier Transform Infrared Spectroscopy 17 2.2.4 Scanning Electron Microscopy 21 2.2.5 Energy Dispersive Spectroscopy 21 2.3 Combustion Characteristics and Indices 21 2.4 Kinetic Parameter Analysis 23 Chapter 3 Pyrolysis 26 3.1 Rice Straw 26 3.1.1 TGA-DSC analysis 26 3.1.2 FTIR analysis 29 3.1.3 SEM-EDS analysis 33 3.1.4 Kinetic Parameter Analysis 35 3.2 Rice Husk 38 3.2.1 TGA-DSC analysis 38 3.2.2 FTIR analysis 41 3.2.3 SEM-EDS analysis 45 3.2.4 Kinetic Parameter Analysis 47 3.3 Rice Straw and Rice Husk from other Country 49 Chapter 4 Combustion 51 4.1 Rice Straw 51 4.1.1 TGA-DSC analysis 51 4.1.2 FTIR analysis 55 4.1.3 SEM-EDS analysis 60 4.1.4 Kinetic Parameter Analysis 64 4.2 Rice Husk 68 4.2.1 TGA-DSC analysis 68 4.2.2 FTIR analysis 72 4.2.3 SEM-EDS analysis 76 4.2.4 Kinetic Parameter Analysis 81 Chapter 5 Conclusion 84 References 87 Appendix 93

    [1] International Energy Agency. (2014). IEA Statistic CO2 emissions From Fuel Combustion, HIGHLIGHTS.
    [2] S. V. Vassiley, D. Baxter, L. K. Andersen, C. G. Vassileva. (2010). An overview of the chemical composition of biomass. Fuel vol. 89, 913-933.
    [3] H. Haykiri-Açma. (2003). Combustion characteristics of different biomass materials. Energy Conversion and Management vol. 44, 155-162.
    [4] N. Aghamohammadi, N. M. N. Sulaiman, M. K. Aroua. (2011). Biomass and Bioenergy vol 35, 3884-3890.
    [5] E. Biagini, F. Lippi, L. Petarca, L. Tognotti. (2002). Devolatilization rate of biomasses and coal-biolass blends : an experimental investigation. Fuel vol. 81, 1041-1050.
    [6] G. K. Parshetti, A. Quek, R. Betha, R. Balasubramanian. (2014). TGA-FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal. Fuel Processing Technology vol. 118, 228-234.
    [7] J. S. Lim, Z. A. Manan, S. R. W. Alwi, H. Hashim. (2012). A review on utilization of biomass from rice industry as a source of renewable energy. Renewable and sustainable energy reviews vol. 16, 3084-3094.
    [8] M. C. Hu, A. L. Huang, T. H. Wen. (2013). GIS-based biomass resource utilization for rice straw cofiring in the Taiwanese power market. Energy vol. 55, 354-360.
    [9] N. L. Panwar, R. Kothari, V. V. Tyagi. (2012). Thermo chemical conversion of biomass – Eco friendly energy routes. Renewable and sustainable energy reviews vol. 16, 1801-1816.
    [10] H.B. Goyal, D. Seal, R.C. Saxena. (2008). Bio-fuels from thermochemical conversion of renewable resources: a review. Renewable and sustainable energy reviews vol. 12, 504-517.
    [11] X. L. Gu, X. Ma, L. X. Li, C. Liu, K. Cheng, Z. Z Li. (2013). Pyrolysis of poplar wood sawdust by TG-FTIR and Py-GC/MS. Journal of analytical and applied pyrolysis vol. 102, 16-23.
    [12] T. Mani, P. Murugan, J. Abedi, N. Mahinpey. (2010). Pyrolysis of wheat straw in a thermogravimetric analyzer-effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chemical Engineering research and design vol. 88, 952-958.
    [13] A. Meng, H. Zhuo, L. Qin, Y. Zhang, Q. Li. (2013). Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. Journal of analytical and applied pyrolysis vol. 104, 28-37.
    [14] G. Mishra, T. Bhaskar. (2014). Non isothermal model free kinetics for pyrolysis of rice straw. Bioresource technology vol. 169, 614-621.
    [15] P. Parthasarathy, K. S. Narayanan, L. Arockiam. (2013). Study on kinetic parameters of different biomass samples using thermo-gravimetric analysis. Biomass and bioenergy vol. 58, 58-66.
    [16] K. Wan, Z. Wang, Y. He, J. Xia, Z. Zhou, J. Zhou, K. Cen. (2015). Experimental investigation and modeling study of pyrolysis of coal, biomass and blended coal-biomass particles. Fuel vol 139, 356-364.
    [17] K. G. Mansaray, A. E. Ghaly. (1998). Thermal degradation of rice husk in nitrogen atmosphere. Biosource technology vol. 65, 13-20.
    [18] Z. Y. Lai, X. Q. Ma,Y. T. Tang, H. Lin. (2012). Thermogravimetric analysis of the thermal decomposition of MSW in N2, CO2 and CO2/N2 atmospheres. Fuel Processing Technology vol 102, 18-23.
    [19] N. B Gao, A. Li, C. Quan, L. Du, Y. Duan. (2013). TG-FTIR and Py-GC/MS analysis on pyrolysis and combustion of pine sawdust. Journal on Analytical and Applied Pyrolysis vol. 100, 26-32.
    [20] M.X. Fang, D.K. Shen, Y.X. Li, C.J Yu, Z.Y Luo, K.F Cen. (2006). Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis. J. Anal. Appl. Pyrolysis vol. 77, 22-27.
    [21] V. Pasangulapati. (2010). Devolatilization characteristics of cellulose, hemicellulose, lignin, and the selected biomass during thermochemical gasification : experiment and modelling studies. Master of Science Thesis, Oklahoma State University.
    [22] A. Gani, I. Naruse. (2007). Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable energy vol. 32, 649-661.
    [23] G. Dorez, L. Ferry, R. Sonnier, A. Taguet, J.-M. Lopez Cuesta. (2014). Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers. Journal of Analytical and Applied Pyrolysis vol. 107, 323-331.
    [24] Z. Q. Xie, X. Q Ma. (2013). The thermal behavior of the co-combustion between paper sludge and rice straw. Biosource Technology vol. 146, 611-618.
    [25] N. Said, T. Bishara, A. G. Maraver, M. Zamorano. (2013). Effect of water washing on the thermal behavior of rice straw. Waste Management vol. 33, 2250-2256.
    [26] Z. Y. Lai, X. Q. Ma, Y. T. Tang, H. Lin, Y. Chen. (2012). Thermogravimetric analyses of combustion of lignocellulosic materials in N2/O2 and CO2/O2 atmospheres. Biosource Technology vol. 107, 444-450.
    [27] R. López, C. Fernández, J. Cara, O. Martínez, M.E. Sánchez. (2014). Oxy-combustion of corn, sunflower, rape, and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis. Energy vol. 74, 845-854.
    [28] N. S. Yuzbasi, N. Selcuk. (2011). Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR. Fuel Processing Technology vol 92, 1101-1108.
    [29] C. X. Chen, Z. G. Lu, X. Q Ma, J. Long, Y. N Peng, L. K Hu, Q. Lu. (2013). Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Biosource Technology vol. 144, 563-571.
    [30] R. López, C. Fernandez, J. Cara, O. Martinez, M.E. Sanchez. (2014). Differences between combustion and oxy-combustion of corn and corn-rape blend using thermogravimetric analysis. Fuel Processing Technology vol. 128, 376-387.
    [31] S. Vyazovkin, A. K. Burham, J. M. Criado, L. A. Perez-Maqueda. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta vol. 520, 1-19.
    [32] C. X. Chen, Z. Q Lu, X. Q Ma, J. Long, Y. N Peng, L. K Hu, Q. Lu. (2013). Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by TGA. Bioresource technology vol. 144, 563-571.
    [33] G. J Lu, S. B. Wu, R. Lou. (2010). Kinetic study of thermal decomposition of hemicellulose isolated from corn stalk. Bioresources vol. 5(2), 1281-1291.
    [34] K Jayaraman, I Gökalp. (2015). Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Conversion and management vol. 89, 83-91.
    [35] M.E. Sanchez, M. Otero, X. Gomez, A. Moran. (2009). Thermogravimetric kinetic analysis of the combustion of biowastes. Renewable Energy vol. 34, 1622-1627.
    [36] J. Opermann, E. Kaisersberger. (1992). An advantageous variant of the Ozawa-Flynn-Wall analysis. Thermochimica Acta vol. 203, 167-175.
    [37] A. Khawam, D. R. Flanagan. (2006). Solid-State kinetic models: basic and mathematical fundamentals. J. Phys. Chem. B vol 110, 17315-17328.
    [38] M. V. de Velden, J. Baeyens, A. Brems, B. Janssens, R. Dewil. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy vol. 35, 232-242.
    [39] J. F. Sheng, D. X Ji, F. W.Yu, Li Cui, Q. Z. Zeng, N. Ai, J. B. Ji. (2014). Influence of Chemical Treatment on Rice Straw Pyrolysis by TG-FTIR. IERI Procedia vol. 8, 30-34.
    [40] A. Sharma, T. R. Rao. (1999). Kinetic of pyrolysis of rice husk. Biosource technology vol. 67, 53-59.
    [41] K. G. Mansaray, A. E. Ghaly. (1998). Thermal degradation of rice husk in nitrogen atmosphere. Biosource technology vol. 65, 13-20.
    [42] L. T. Vlaev, I. G. Markovska, L. A. Lyubchev. (2003). Non-isothermal kinetics of pyrolysis of rice husk. Thermochimica Acta vol. 406, 1-7.
    [43] P. Fu, S. Hu, J. Xiang, P. Li, D. Huang, L. Jiang, A. C. Zhang, J. Y. Zhang. (2010). FTIR study of pyrolysis products evolving from typical agricultural residues. Journal of analytical and applied pyrolysis vol. 88, 117-123.
    [44] P. Fu, S. Hu, J. Xiang, L. Sun, T. Yang, A. C. Zhang, J. Y. Zhang. (2009). Mechanism Study of Rice Straw Pyrolysis by Fourier Transform Infrared Technique. Chinese journal of Chemical Engineering vol. 17, 522-529.
    [45] Z. S. Yu, X. Q. Ma, A. Liu. (2008). Thermogravimetric analysis of rice and wheat straw catalytic combustion in air- and oxygen-enriched atmosphere. Energy conversion and management vol. 50, 561-566.
    [46] H. P Liu, Y. J. Feng, S. H Wu, D. Liu. (2009). The role of ash particles in the bed agglomeration during the fluidized bed combustion of rice straw. Biosource Technology vol. 100, 6505-6513.
    [47] N. Worasuwannarak, T. Sonobe, W. Tanthapanichakoon. (2007). Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J. Anal. Appl. Pyrolysis vol. 78, 265-271.
    [48] K. G. Mansaray, A. E. Ghaly. (1999). Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis. Biomass and bioenergy vol. 17, 19-31.
    [49] E. Biagini, A. Fantei, L. Tognotti. (2008). Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta vol. 472, 55-63.
    [50] H. P. Liu, L. Y. Zhang, Z. J. Han, B. Y. Xie, S. H. Wu. (2013). The effects of leaching methods on the combustion characteristics of rice straw. Biomass and bioenergy vol. 49, 22-27.
    [51] A. Ganesh, P. D. Grover, P. V. R. Iyer. (1992). Combustion and gasification characteristics of rice husk. Fuel vol. 71, 889-894.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE