簡易檢索 / 詳目顯示

研究生: 鄭永志
Cheng, Yung-Chih
論文名稱: 介白素19在生物體內之功能性分析
In vivo biological function study of interleukin-19
指導教授: 張明熙
Chang, Ming-shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學研究所
Department of Biochemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 88
中文關鍵詞: 細胞激素介白素19電擊氣喘
外文關鍵詞: Interleukin-19, intramuscular electroporation, asthma, cytokine
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞激素(cytokine),在人體的免疫系統中扮演著相當重要的角色,不論是血球的分化、生成及促進免疫系統對抗外來病原體入侵的反應,皆需要細胞激素的作用。發炎的的細胞激素(Pro-inflammatory cytokine)和抗發炎的細胞激素(anti-inflammtory cytokine)在體內存在一種動態的平衡,當發炎的細胞激素產生過多時,抗發炎的細胞激素會立即增加以調控過多的發炎細胞素所產生的反應;但是,若產生過多抗發炎的細胞激素,則會對人體清除外來病原的機制產生不良的影響。
    Interleukin-10 (IL-10)為一種人體內抑制發炎的多功能型細胞素,在臨床試驗上用來治療許多發炎和自體免疫的疾病,包括牛皮癬、風溼性關節炎以及多發性硬化症等。IL-10家族包括IL-19、IL-20、IL-22、IL-24 (MDA-7)、IL-26 (AK-155);這些IL-10的成員雖然在胺基酸的組成上有部份的相似性,但是在生物性功能上卻不盡相同。
    IL-19在in vitro的實驗中已發現: 將IL-19用來處理單核球細胞時,會刺激單核球細胞產生interleukin-6 (IL-6) 和tumor necrosis factor-α(TNF-α),並且會使單核球進行細胞性的凋亡和產生ROS反應。為了進一步探討IL-19在生物體內(in vivo)所扮演的角色,我們將mouse IL19 (mIL-19) 的full-length cDNA構築在pCDNA3.1載體上,並利用intramuscular electroporation的方式,將包含mIL-19的質體送入老鼠體內進行蛋白質表現,以觀察老鼠所顯示的phenotype;另外我們也採用E.coli的系統來表達mIL-19,並完成mIL-19蛋白質的純化。我們利用900V 、100μs、6 pulse/sec的電擊條件,針對老鼠的大腿內側肌肉進行intramuscular electroporation,並且每隔兩天施打一次,總共進行四次;同時每兩天藉由眼窩採血的方式取得老鼠血清,以各種不同的functional assays檢測老鼠體內生理功能上的改變。經由ELISA的方法,觀察到在施打後第四天,IL-19的表現量達到最高值,並且偵測到體內的 IL-4、IL-5、IL-10表現量有增加的情形。另外我們也發現施打後12天,體內的B細胞比打入Empty vector小鼠的B cell有15%程度的增生;並由in vitro的方式證實IL-19本身的確會使B細胞活化,並隨著作用時間增加而有不同的增生情形。同時,我們也製造出一批具有allergenic airway inflammation的老鼠,以方便我們探討IL-19和asthma疾病之間的關連性。我們發現在這批asthma mice的血清中,IL-13和IL-19的表現量均會上升。總而言之,在in vivo和in vitro的情況下,IL-19是B cell增生和分化的一個重要因子;IL-19也會促進IL-4、IL-5和IL-10這類Th2細胞激素的增生。IL-19在asthma疾病中可能扮演著一種相當重要的角色。

    A dynamic balance exists between proinflammatory cytokines and anti-inflammatory cytokines in human immune system. Inadequate concentrations of anti-inflammatory cytokines result in excess inflammation, yet excess anti-inflammatory cytokine concentrations disrupt clearance mechanisms of microbial pathogens in the host. Interleukin-10 is a well-studied pleiotropic immunosuppressive and immune-stimulatory cytokine. It was in clinical trail as an anti-inflammatory therapy for inflammatory bowel disease and various autoimmune diseases such as psoriasis, rheumatoid arthritis, and multiple sclerosis. IL-19 belongs to the interleukin-10 (IL-10) family, which includes IL-10, IL-19, IL-20, IL-22, MDA-7 (IL-24), and AK155 (IL-26). Our previous study showed mouse interleukin-19 (mIL-19) induced the production of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α). Mouse IL-19 also induced mouse monocytes apoptosis and production of reactive oxygen species (ROS). To analyze the in vivo biological function of mouse interleukin-19 (mIL-19), we used intramuscular electroporation to deliver the mouse interleukin-19 into mouse. The protocol used for intramuscular electroporation was 900V, 100μs, 6 pulse/sec at each side of the leg of mice. Four administrations were performed in one week and different tibialis muscles were injected alternatively. The serums of mice are bled from the retro-orbital plexus every two days. ELISA was performed to detect the level of mIL-19 in blood. The levels of IL-4, IL-5 and IL-10 were increased in blood after delivery of IL-19 into mice. We also found that when B cells population of spleen increased by 15% after treatment with of IL-19 for 12 days, compared to the control. When B cells isolated from normal mice were treated with IL-19 along with anti-CD 40 in vitro, proliferations of B cells increased by 58 %. It demonstrated that IL-19 can potentiate with anti-CD 40 to induce B cell proliferation. We generated an asthma animal model to study the relationship between IL-19 and asthma. Both IL-13 and IL-19 were shown to increase in the serum of asthma mice. Taken together, we have demonstrated that IL-19 is a B cells growth and differentiation factor both in vivo and In vitro. IL-19 also induces Th2 cytokine production including IL-4, IL-5 and IL-10. IL-19 may play an important role in asthma disease.

    目 錄 誌謝 1 目錄 2 中文摘要 3 英文摘要 5 圖目錄 7 表目錄 9 附錄目錄 10 縮寫檢索表 11 儀器 13 第一章 緒論 15 第二章 實驗方法和材料 19 第三章 結果 39 第四章 討論 44 參考文獻 49 圖 57 表 78 附錄 79 自述 88

    1.Aihara, H. and Miyazaki, J. Gene transfer into muscle by electroporation in
    vivo. Nat Biotechnol 16:867. 1998.

    2.Akbari, O., Freeman, G., Meyer, E., Greenfield, A., Chang, T., Sharpe, A.,
    Berry, G., Dekruyff, R. and Umetsu, D. Nature Medicine. 8:1024-1032, 2002.

    3.Anthony, R., Mire, S. and Robin, T. (1998) Cytokine, Academic Press Inc.

    4.Burdin, N., Peronne, C., Banchereau, J. and Rousser, F. Epstein-Barr virus
    transformation induces B lymphocytes to produce human interleukin 10. J.
    Exp. Med. 177: 295-304, 1993.

    5.Byrne, A., Reen, DJ. Lipopolysaccharide induces rapid production of IL-10 by
    monocytes in the presence of apoptotic neutrophils. J Immunol. 168:1968-77.
    2002

    6.Blumberg, H., Conklin, D., Xu, W. F., Grossmann, A., Brender, T., Carollo,
    S., Eagan, M., Foster, D., Haldeman, B. A., Hammond, A., Haugen, H.,
    Jelinek, L., Kelly, J. D., Madden, K., Maurer, M. F., Parrish-Novak, J.,
    Prunkard, D., Sexson, S., Sprecher, C., Waggie, K., West, J., Whitmore, T.
    E., Yao, L., Kuechle, M. K., Dale, B. A., and Chandrasekher, Y. A.
    Interleukin 20 discovery, receptor identification, and role in epidermal
    function. Cell 104, 9-19, 2001

    7.Chen, Q., Daniel, V., Maher, D.W. and Hersey, P. Production of IL-10 by
    melanoma cells: examination of its role in immunosuppression mediated by
    melanoma. Int J. Cancer 56: 755-760, 1994.

    8.Daheshia, M., N. Kuklin, S. Kanangat, E. Manickan, and B.T. Rouse.
    Suppression of ongoing ocular inflammatory disease by topical administration
    of plasmid DNA IL-10. J. Immunol. 159: 1945-1952, 1997.

    9.Dai, Y., Roman, M., Naviaux, R. K. and Verma, I. M. Gene therapy via primary
    myoblasts: long-term expression of factor IX protein following
    transplantation in vivo. Proc Natl Acad Sci U S A 89:10892. 1992.

    10.de Waal Malefyt, R. D., Abrams, J., Bennet, B., Figdor, G. C. and de Vries,
    J. E. Interleukin-10 inhibits cytokine synthesis by human monocytes: an
    autoregulatory role of IL-10 produced by monocytes. J. Exp Med 174: 1209-
    1220, 1991.

    11.de Waal Malefyt, R., Figdor, C. G., Huijbens, R. et al. Efects of IL-13 on
    phenotype, cytokine production, and cytotoxic function of human monocytes.
    Comparision with IL-4 and modulation by IFN- or IL-10. J. Immunol 151:
    6370-6381, 1993.

    12.De Jong, B. A., Schrijver, H. M., Huizinga, T. W., Bollen, E. L., Polman,
    C. H., Uitdehaag, B. M., Kersbergen, M. C., Sturk, A., Westendorp, R. G..
    Innate production of interleukin-10 and tumor necrosis factor affects the
    risk of multiple sclerosis. Ann Neurol 48:641-6, 2000.

    13.Di-Hwei, H., de Waal Malefyt, R., Fiorentino, D.F., minh-Ngoc Dang, Viera,
    P., de Vries, J., Spits, H., Mosmann, t.M.&Moore, K. M. Expression of
    interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science 250:
    830-832, 1990.

    14.Dinarello, C. A. Interleukin-1, interleukin-1 receptors and interleukin-1
    receptor antagonist. Int. Rev. Immunol. 16: 457-499, 1998.

    15.Ding, Y., Qin, L., Kotenko, S. V., Pestka, S., Bromberg, J. S. A single
    amino acid determines the immunostimulatory activity of interleukin 10. J.
    Exp Med 191: 213-224, 2000.

    16.Dumoutier, L., J. Louahed, and Renauld, J.-C. Cloning and
    characterizationof IL-10-related T cell derived inducible factor ( IL-
    TIF ), a novel cytokine structurally related to IL-10 and inducible by IL-
    9. J. Immunol. 164: 1814, 2000.

    17.Dumoutier, L., E. Van Roost, D. Colau, and Renauld, J.-C. Human IL-TIF:
    molecular cloning and functional characterization as an hepatocyte
    stimulating factor. Proc. Natl. Acad. Sci. USA 97: 10144, 2000b.

    18.Dumoutier, L., Leemans, C., Lejeune, D., Kotenko, S. V., and Renauld, J. C.
    Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20
    receptor complexes of two types. J.Immunol. 167: 3545-3549, 2001.

    19.Dupuis, M. K., Denis-Mize, C., Woo, C. Goldbeck, M. J., Selby, M. Chen, G.
    R., Otten, J. B., Ulmer, J. J., Donnelly, Ott, G. and McDonald, D. M.
    Distribution of DNA vaccines determines their immunogenicity after
    intramuscular injection in mice. J Immunol 165:2850. 2000.

    20.Fei, N.F., B.E. Castle, R. Barrett, R. Kastelein, W. Dang, T.R. mosmann, K.
    W., Moore and M. Howard. Interleukin-10, a novel B cell stimulatory factor:
    unresponsiveness of X chromosome-linked immunodeficiency B cell. J. Exp.
    Med. 172: 1625-1631, 1990.

    21.Fickenscher, H., Hor, S., Kupers, A., Wittmann, S., Sticht, H.The
    interleukin-10 family of cytokines. Trends Immunol 23:89-96, 2002.

    22.Gastl, G.A., Abrams, J.S., Nanus, D.M., et al. Interleukin-10 production by
    humancarcinoma cell lies and its relationship to interleukin-6 expression.
    Int. J. Cancer 55: 96-101, 1993.

    23.Gesser, B., Leffers, H., Jinquan, T., Vestergaard, C., Kirstein, N., Sindet-
    Pedersen, S., Jensen, S. L., Thestrup-Pedersen, K., and Larsen, C. G.
    Identification of functional domains on human interleukin 10. Proc. Natl.
    Acad. Sci. USA 94: 14620-14625, 1997.

    24.Gallagher, G., Dickensheets, H., Eskdale, J., Izotova, L. S.,
    Mirochnitchenko, O. V., Peat, J. D., Vazquez, N., Pestka, S., Donnelly, R.
    Kotenko SV. Cloning, expression and initial characterization of interleukin-
    19(IL-19), A novel homologue of human interleukin-10(IL-10). Genes Immun
    1:442-50, 2000.

    25.Heller, R., M. Jaroszeski, A., Atkin, D., Moradpour, R., Gilbert, J., Wands
    and Nicolau, C. In vivo gene electroinjection and expression in rat liver.
    FEBS Lett 389:225. 1996.

    26.Hoover, F., and Magne Kalhovde, J. A double-injection DNA electroporation
    protocol to enhance in vivo gene delivery in skeletal muscle. Anal Biochem
    285:175. 2000.

    27.Horton, H. M., Anderson, D., Hernandez, P., Barnhart, K. M., Norman, J. A.
    and Parker, S. E. A gene therapy for cancer using intramuscular injection
    of plasmid DNA encoding interferon alpha. Proc Natl Acad Sci U S A 96:1553.
    1999.

    28.Hsu, D. H., de Waal Malefyt, R., Fioretino, D. F., Dang, MN., Vieira, P.,
    de Vries, J., Spits, H., Mosmann, TR., Moore, KW. Expression of interleukin-
    10 activity by Epstein-Barr virus protein BCRF1. Science.

    29.Jinquan, T., Larsen, C. G., Gessser, b., Matsushima, K.&Thestrup-Pedersen,
    K. Human IL-10 is a chemoattractant for CD8+ T lymphocytes and an inhibitor
    of IL-8-induced CD4+ T lymphocyte migration. J. Immunol. 151: 4545-4551,
    1993.

    30.Katsikis, P.D., Chu, C. Q., Brennan, F.M., Maini, R.N. and Feldmann. M.
    Immunoregulatory role of interleukin 10 in rheumatoid arthritis. J. Exp.
    Med. 179: 1517-1527, 1994.

    31.Kasai, T., Inada, K., Takakuwa, T., et al. Anti-inflammatory cytokine
    levels in patients with septic shock. Res Commun Mol Pathol Pharmacol 98:
    34-42, 1997.

    32.Knappe, A., Hor, S., Wittmann, S. and Fickenscher, H. Induction of a novel
    cellular homolog of interleukin-10, Ak155, by transformation of T
    lymphocytes with herpesvirus saimiri. J. Virol. 74: 3881-3887, 2000.

    33.Kotenko, S. V., Izotova, L. S., Mirochnitchenko, O. V., Esterova, E.,
    Dickensheets, H., Donnelly, R. P. and Pestka, S. Identificationof the
    functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-
    10R) is a common chain of both the IL-10 and IL-22 (IL-TIF) receptor
    complexes. J. Biol. Chem. 276: 2725-2732, 2000.

    34.Kube, D., Platzer, C., Von Knethen, A., Straub, H., Bohlen, H., Hafner, M.,
    Tesch, H. Isolation of the human interleukin 10 promoter. Characterization
    of the promoter activity in Burkitt's lymphoma cell lines. Cytokine. Jan; 7
    (1):1-7. 1995

    35.Laure, D., Caroline, L., Diane, L., Sergei, V. K. and Christophe, R.
    Cutting Edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20
    receptor complexes of two types. J. Immunol. 167: 3545-3549, 2001.

    36.Lehmann, M. H. Recombinant human granulocyte-macrophage colony-stimulating
    factor triggers interleukin-10 expression in the monocytic cell line U937.
    Mol Immunol 35:479-85, 1998

    37.Li, S., MacLaughlin, F. C., Fewell, J. G., Li, Y., Mehta, V., French, M.
    F., Nordstrom, J. L., Coleman, M., Belagali, N. S., Schwartz, R. J. and
    Smith, L. C. Increased level and duration of expression in muscle by co-
    expression of a transactivator using plasmid systems. Gene Ther 6:2005.
    1999.

    38.Li, S., Zhang, X., Xia, X., Zhou, L., Breau, R., Suen, J. and Hanna, E.
    Intramuscular electroporation delivery of IFN-alpha gene therapy for
    inhibition of tumor growth located at a distant site.Gene Ther 8:400. 2001.

    39.Liao, Y.C., Liang, W.G., Chen, F.W., Hsu, J.H., Yang, J.J., Chang, M. S. IL-
    19 induces production of IL-6 and TNF-alpha and results in cell apoptosis
    through TNF-alpha. J. Immunol. Oct 15; 169 (8): 4288-97. 2002.

    40.MacNeil, IA., Suda, T., Moore, KW., Mosmann, TR., Zlotnik, A. IL-10, a
    novel growth cofactor for mature and immature T cells. J. Immunol. Dec 15;
    145(12):4167-73. 1990.

    41.Maruyama, H., Ataka, K., Gejyo, F., Higuchi, N., Ito, Y., Hirahara, H.,
    Imazeki, I., Hirata, M., Ichikawa, F., Neichi, T., Kikuchi, H., Sugawa, M.
    and Miyazaki, J. Long-term production of erythropoietin after
    electroporation-mediated transfer of plasmid DNA into the muscles of normal
    and uremic rats. Gene Ther 8:461. 2001.

    42.Mathiesen, I. Electropermeabilization of skeletal muscle enhances gene
    transfer in vivo. Gene Ther 6:508. 1999.

    43.Mignon-Godefroy, K., Rott, O., Brazillet, m.-P. and Charreire, J. Curative
    and protective effects of IL-10 in experimental autoimmune thyroiditis
    (EAT). J. Immunol. 154: 6634-6643, 1995.

    44.Mir, L. M., Bureau, M. F., Gehl, J., Rangara, R., Rouy, D., Caillaud, J.
    M., Delaere, P., Branellec, D., Schwartz, B. and Scherman, D. High-
    efficiency gene transfer into skeletal muscle mediated by electric pulses.
    Proc Natl Acad Sci U S A 96:4262. 1999.

    45.Moore, K.W., Vieira, P., Fiorentino, D. et al. Homology of cytokine
    synthesis inhibitory factor (IL-10) to Epstein-Barr virus gene BCRF1.
    Science 248: 1230-1234, 1990.

    46.Moore, K. W., O’Garra, A., de waal Malefyt, R., Vieira, P., Mosmann, T. R.
    Interleukin-10. Annu Rev Immunol 11: 165-190, 1993.

    47.Mosmann, TR. Regulation of immune responses by T cells with different
    cytokine secretion phenotypes: role of a new cytokine, cytokine synthesis
    inhibitory factor (IL10). Int Arch Allergy Appl Immunol.; 94(1-4):110-5.
    Review. 1991

    48.Mumper, R. J., Wang, J., Klakamp, S. L., Nitta, H., Anwer, K., Tagliaferri,
    F. and Rolland. A. P. Protective interactive noncondensing (PINC) polymers
    for enhanced plasmid distribution and expression in rat skeletal muscle. J
    Control Release 52:191. 1998.

    49.Munoz, C., Carlet, J., Fitting, C., et al. Dysregulation of in vitro
    cytokine production by monocytes during sepsis. J. Clin. Invest. 88: 1747-
    1754, 1991.

    50.Nishi, T., Yoshizato, K., Yamashiro, S., Takeshima, H., Sato, K., Hamada,
    K., Kitamura, I., Yoshimura, T., Saya, H., Kuratsu, J. and Ushio, Y. High-
    efficiency in vivo gene transfer using intraarterial plasmid DNA injection
    following in vivo electroporation. Cancer Res 56:1050. 1996.

    51.O'Malley, B. W., Jr., Cope, K. A., Johnson, C. S. and Schwartz. M. R. A new
    immunocompetent murine model for oral cancer. Arch Otolaryngol Head Neck
    Surg 123:20. 1997.

    52.P., and Kotenko, S. V. Cloning, expression and initial characterization of
    interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10).
    Genes Immun. 1: 442-450, 2000.

    53.Rizzuto, G., Cappelletti, M., Maione, D., Savino, R., Lazzaro, D., Costa,
    P., Mathiesen, I., Cortese, R., Ciliberto, G., Laufer, R., La Monica, N.
    and Fattori, E. Efficient and regulated erythropoietin production by naked
    DNA injection and muscle electroporation. Proc Natl Acad Sci U S A 96:6417.
    1999.

    54.Rousser, F., Garcia, E., Defrance, T., Peronne, C., Vezzio, n., Hsu, D. H.,
    Kastelein, R., Moore, K.W. and Banchereau, J. Interleukin-10 is a potent
    growth and differentiation factor for activated human B lymphocytes. Proc.
    Natl. Acad. Sci. USA 89: 1890-1893, 1992.

    55.Spriggs, M. K. One step ahead of the game: viral immunomodulatory
    molecules. Annu Rev Immunol 130: 101-130, 1996.

    56.Steven, M., Opal, Vera, A., Depalo. Impact of basic research on tomorrow’s
    medicine: Anti-inflammatory cytokine. Chest 117: 1162-1172, 2000.

    57.Suberville, S., Bellocq, A., Peguillet, I., Lantz, O., Stordeur, P.,
    Fouqueray, B., Baud, L. Transforming growth factor-beta inhibits
    interleukin-10 synthesis by human monocytic cells. Eur Cytokine Netw
    12:141-6, 2001.

    58.Suzuki, S., Mita, S., Kamohara, H., Sakamoto, K., Ishiko, T., Ogawa, M. IL-
    6 and IFN-gamma regulation of IL-10 production by human colon carcinoma
    cells. Int J Oncol. 18:581-6, 2001

    59.Thompson-Snipes, L. A., Dhar, V., Bond. M.W., Mosmann, T. R., Moore, K.W.
    and Rennick, D.M. Interleukin-10: a novel stimulatory factor for mast cells
    and their progenitors. J. Exp. Med. 173: 507-510, 1991.

    60.Vicat, J. M., Boisseau, S., Jourdes, P., Laine, M., Wion, D., Bouali-
    Benazzouz, R., Benabid, A. L. and Berger, F. Muscle transfection by
    electroporation with high-voltage and short- pulse currents provides high-
    level and long-lasting gene expression. Hum Gene Ther 11:909. 2000.
    61. Vieira, P., Waal, de,. Malefyt, R., Dang, W., et al. Isolation oand
    expressiono fhuman cytokine synthesis inhibitory factor (CSIF) cDNA clones:
    homology to Epstein Barr virus open reading frame BCRFI. Proc. Natl Acad.
    Sci. USA 88: 1172-1176, 1991.

    62.Wanidworanun, C., Strober, W. Predominant role of tumour necrosis factor-
    in human monocyte IL-10 synthesis. J. Immunol 151: 6853-6861, 1993.

    63.Wolff, J. A., Malone, R. W., Williams, P., Chong, W., Acsadi, G., Jani, A.
    and Felgner, P. L. Direct gene transfer into mouse muscle in vivo. Science
    247:1465. 1990.

    64.Yamashita, Y. I., Shimada, M., Hasegawa, H., Minagawa, R., Rikimaru, T.,
    Hamatsu, T., Tanaka, S., Shirabe, K., Miyazaki, J. I. and Sugimachi, K.
    Electroporation-mediated interleukin-12 gene therapy for hepatocellular
    carcinoma in the mice model. Cancer Res 61:1005. 2001.

    65.Yin, D., and Tang, J. G. Gene therapy for streptozotocin-induced diabetic
    mice by electroporational transfer of naked human insulin precursor DNA
    into skeletal muscle in vivo. FEBS Lett 495:16. 2001.

    66.Yssel, H., De Waal Malefyt, R., Roncarolo, M.G., et al. IL-10 is produced
    by subsets of human CD4+ T cell clones and peripheral blood T cells. J.
    Immunol. 149: 2378-2384, 1992.

    下載圖示 校內:2004-08-19公開
    校外:2004-08-19公開
    QR CODE