| 研究生: |
簡士哲 Chien, Shi-Zhe |
|---|---|
| 論文名稱: |
於蜂巢狀網路中應用貝氏賽局理論之節能選擇策略 A Power Saving Selection Strategy based on Bayesian Game Theory for Cellular Networks |
| 指導教授: |
林輝堂
Lin, Hui-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 蜂巢狀網路 、貝氏賽局理論 、能源效率 、分散式 、休眠管理 |
| 外文關鍵詞: | cellular networks, Bayesian game theory, energy efficiency, distributed, sleep-mode management |
| 相關次數: | 點閱:193 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於過多的能源消耗以及溫室氣體排放,使得全球暖化問題日益嚴重。再者,根據研究顯示,在整個行動通訊網路中約有75%的能源損耗來自基地台的使用。因此,針對基地台發展具降低能源消耗且提高能源使用效率之技術,已成為未來的一股趨勢。基於上述,本碩士論文欲於蜂巢狀網路上,利用貝氏賽局理論提出一個分散式傳輸能源策略。在此提出之策略,考慮基地台彼此擁有不完全資訊的情況下,基地台可透過貝氏賽局在有限的資訊交換互動中去選擇最佳傳輸能源,藉此達到自身能源效率最佳化。此外,本碩士論文亦會提出一個基地台休眠管理機制提升整體網路的節能效率。最後,由電腦模擬結果驗證,本論文所提出之分散式傳輸能源策略確實可達到較佳的能源與節能效果。
Reducing energy consumption and achieving high energy efficiency has become an important mission for the cellular networking industry to slow down the trend of global warming. In this thesis, a distributed power selection strategy for base stations in cellular networks to significantly reduce the energy consumption and improve energy efficiency while satisfying users’ demands is proposed. The proposed scheme applies Bayesian game theory to allow base stations to optimize the energy efficiency by selecting the best transmission power strategy in a distributed way. In addition, the current thesis also proposes a sleep-mode management mechanism for base stations to further improve their energy efficiency. Finally, through the computer simulations, it is shown that the proposed distributed transmission power strategy indeed achieves the optimal energy efficiency.
[1] “Climate Change: Commission Welcomes Final Adoption of Europe’s Climate and Energy Package,” European Commission, December 2008.
[2] “IEEE draft amendment standard for local and metropolitan area networks – part 16:Air interface for broadband wireless access system – advanced air interface,” IEEE, Piscataway, NJ, September. 2010, 802.16m.
[3] “Smart 2020: Enabling The Low Carbon Economy in The Information Age, ” Global e-Sustainability Initiative, 2008
[4] 3GPP, TR 25.814, V7.0.0, “Physical Layer Aspects for Evolved UTRA,”June 2006.
[5] 3GPP, TR 36.814, V9.0.0, “Further Advancements for EUTRA Physical Layer Aspects,” March 2010.
[6] A. G. Spilling, A. R. Nix, and M. A. Beach, “Adaptive Cell Sizing in Cellular Networks,” IEEE Colloquium on Capacity and Range Enhancement Techniques for the Third Generation Mobile Communications and Beyond, no. 11, pp.4/1-4/5, February 2000.
[7] C. A. St Jean and B. Jabbari, ”Bayesian Game-Theoretic Modeling of Transmit Power Determination in a Self-Organizing CDMA Wireless Network” IEEE Vehicular Technology Conference, 2004.
[8] D. J. Goodman, and N. B. Mandayam, “Power Control for Wireless Data,” IEEE Personal Communications, vol.7, no.2, pp.48-54, April 2000.
[9] E. Oh, K. Son and B. Krishnamachari, “Dynamic Base Station Switching-on/off Strategies for Green Cellular Networks,” IEEE Transactions on Wireless Communications, May 2013.
[10] F. A. Cruz-Perez, D. Lara-Rodriguez, and M. Lara, “Full-and Half-Square Cell Plans in Urban CDMA Microcellular Networks,” IEEE Transactions on Vehicular Technology, vol. 52, no. 3, pp. 502-511, May 2003.
[11] F. Richter, A. J. Fehske, and G. P. Fettweis, “Energy Efficiency Aspects of Base Station Deployment Strategies for Cellular Networks,” IEEE Vehicular Technology Conference Fall, September 2009.
[12] G. Fettweis, E. Zimmermann “ICT Energy Consumption-Trends and Challenges” International Symposium on Wireless Personal Multimedia Communications, vol. 2, no. 4, pp. 6, September 2008.
[13] G. P. Pollini, “Trends in handover design,” IEEE Commun. Mag., vol. 34, no. 3, pp. 82-90, March. 1996
[14] I. H. Cavdar, and O. Akcay, “The Optimization of Cell Sizes and Base Stations Power Level in Cell Planning,” IEEE Vehicular Technology Conference Spring, vol. 4, pp. 2344-2348, 2001.
[15] IEEE standard 802.16e, “Air Interface for Fixed Broadband Wireless Access Systems,” February 2006.
[16] K. Akkarajitsakul, E. Hossain, and D. Niyato, “Distributed Resource Allocation in Wireless Networks under Uncertainty and Application of Bayesian game,” IEEE Communications Magazine, vol. 49, no. 8, pp. 120-127, August 2011.
[17] M. A. Marsan, L. Chiaraviglio, D. Ciullo, and M. Meo, “Optimal Energy Savings in Cellular Access Networks,” IEEE International Conference on Communications on Workshops, June 2009.
[18] M. L. Treust, and S. Lasaulce, “A Repeated Game Formulation of Energy-Efficient Decentralized Power Control,” IEEE Transactions on Wireless Communications, vol. 9, no. 9, pp. 2860-2869, September 2010.
[19] S. Buzzi and D. Saturnino, “A Game-Theoretic Approach to Energy Efficient Power Control and Receiver Design in Cognitive CDMA Wireless Networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 1, pp. 137-150, February 2011.
[20] S. Guruacharya, D. Niyato, D. I. Kim, and E. Hossain,” Hierarchical Competition for Downlink Power Allocation in OFDMA Femtocell Networks,” IEEE Transactions on Wireless Communications, April 2013.
[21] S. Zhou, J. Gong, Z. Yang, “Green Mobile Access Network with Dynamic Base Station Energy Saving,” ACM Conference on Mobile Computing and Networking, 2009
[22] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, “Femtocell Networks: A Survey,” IEEE Communications Magazine, vol.46, no.9, pp. 59-67, September 2008.
[23] W. Cheng, H. Zhang, L. Zhao, and Y. Li, “Energy Efficient Spectrum Allocation for Green Radio in Two-Tier Cellular Networks,” IEEE Global Telecommunications Conference, December 2010.
[24] Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjorungnes, “Game Theory in Wireless and Communication Networks: Theory, Models, and Applications, ”Cambridge University Press,2011.
[25] Z. Niu, “TANGO: Traffic-Aware Network Planning and Green Operation” IEEE Wireless Communications, October 2011.