簡易檢索 / 詳目顯示

研究生: 黃毓升
Huang, Yu-Sheng
論文名稱: 適用東亞地區衛星導航系統之星座設計及效能評估
The Constellation Design and Performance Analysis of East Asia Regional Navigation Satellite System
指導教授: 江凱偉
Chiang, Kai-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 255
中文關鍵詞: 區域導航衛星系統星座設計
外文關鍵詞: RNSS, Constellation design
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球導航衛星系統(Global Navigation Satellite System, GNSS)技術不斷更新創造更多發展空間,伴隨著巨大之社會經濟、科技以及環境之收益。因此許多國家皆致力於發展該國新的GNSS,不僅可以與現有之系統結合提升效能,更可以提供新的服務達到該國之自主性並確保系統可得度。GNSS建構於一個至少需要24顆星座之基礎,需要更多衛星才能達到使用者可接受之服務等級,而GNSS之建置不只需太空部分設置大量衛星,還需要佈設複雜的全球分布之地面控制部分包括主控站、追蹤站及上傳站。故發展、維護與操控GNSS所需費用昂貴。
    GNSS造價昂貴且設計相當複雜,使得一些國家及區域很難跨過這個門檻而只能妥協使用現有之系統或者是評估發展該國之輔助系統,一個可能的替代方案為發展低價之區域導航衛星系統(Regional Satellite Navigation System, RNSS)。RNSS可在有興趣之區域提供最佳的效能,使用簡化之衛星數量及地面控制站;其地面站之部署不再需要全球分布,只需在有興趣或鄰近之區域設置即可。這些簡化的措施皆可大量降低系統開發之費用;因此各國在初步階段的設計可從區域型的衛星導航系統之觀點出發,未來若有需要再擴展為全球型的衛星導航系統。
    日本太空實驗機構開始研究將其原有Quasi-Zenith Satellite System(QZSS)擴充為RNSS,換句話說,QZSS為發展未來覆蓋亞太區RNSS之初始階段,其研究結合幾種同步衛星(Geosynchronous orbit, GSO)軌道包括IGSO (Inclined Geosynchronous orbit)以及GEIO (Geosynchronous Eccentric and Inclined Orbit)。同時,印度也積極發展該國RNSS稱為IRNSS(Indian Regional Navigation Satellite System),其提供自主導航系統在印度大陸上空,將會由3顆靜止軌道 (Geostationary orbit, GEO)衛星及4顆GSO衛星所組成,計畫於2013年完成衛星部署。
    本文利用自行開發之GNSS軟體模擬器進行設計規劃星座。藉由針對諸如三維定位精度分佈、內可靠度及外可靠度等相關性能指標進行評估與分析,吾人可針對不同的星座設計提出具體的比較成果以利後續研究之用。RNSS可提供Global Positioning System(GPS)之差分改正量及加入額外的測距訊號,相關訊號之設計並不在此研究範疇。本研究設計規劃32種方案,覆蓋範圍除了台灣區域也包含東亞與大洋洲地區,期望能以較少的衛星數量,達到較佳的分佈情況,提供與GPS衛星系統同等級的效能精度。

    Global satellite navigation technology is continuously advancing new possibilities in an increasing number of applications. The unprecedented social, economic, technological and environmental benefits to be gained through these applications are becoming very clear. Consequently, there is a worldwide growing interest in the development of Global Satellite Navigation Systems as it is demonstrated by the interest of several countries in starting the development of new systems or contributing to existied ones to increase the performance of current systems or to provide new services as well as ensure independence and availability of the system.
    Global Navigation Satellite Systems are based in constellations of at least 24 satellites. A relatively high number of satellites are required to provide acceptable performances to users. A possible alternative could be the development of regional navigation systems aiming at providing a complete independent system, over the region of interest. These systems shall be able to operate autonomously, being possible to navigate only with these systems without assuming the existence of other systems like GPS, GLONASS or Galileo. These systems shall be interoperable with other systems allowing improved performances over the regions of interests and shall take into account the strategic interest of the regions.
    Recently, The Japan Aerospace Exploration Agency has initiated the study to extend its QZSS to a regional navigation system. In other words, QZSS can be regarded as the initial phase for the future evolution to a regional satellite navigation system covering Eastern Asia and Oceania. It has explored several options which have different orbit and combination between Quasi-Zenith satellites, geosynchronous satellites, and inclined geosynchronous satellites. Meanwhile, India approved to implement the Indian Regional Navigation Satellite System to provide an autonomous navigation system for the Indian subcontinent in May 2006. The space segment will consist of three geostationary satellites and four geosynchronous satellites. All satellites are planned to be in orbits by 2013
    The preliminary results in terms of the satellite visibility, DOP values, internal reliability (Minimal Detectable Biases) and external reliability (Minimal detectable effect) and the robustness to urban canyon effect do illustrate the performance of proposed constellation is not far from GPS in Eastern Asia region. Using the indices mentioned above can be considered as the best option for the future development. There are 32 cases will be conducted to investigate more possible constellations. Ultimately, the constellation with fewer satellites but can provide the most stable performance over this region.

    摘要 ....................................................................... I Abstract ................................................................... II 致謝 ....................................................................... III 目錄 ....................................................................... IV 表目錄 ..................................................................... VIII 圖目錄 ..................................................................... X 第一章 緒論 ................................................................ 1 1-1 背景 ................................................................... 1 1-2 動機與目的 ............................................................. 2 1-3 研究方法 ............................................................... 3 1-4 論文架構 ............................................................... 4 第二章 衛星軌道與星座 ...................................................... 6 2-1 衛星位置計算 ........................................................... 6 2-1-1 衛星克卜勒運動定律 ................................................... 6 2-1-2 克卜勒元素 (Keplerian elements) ...................................... 7 2-1-3 離心率之影響 ......................................................... 8 2-1-4 軌道高度之影響 ....................................................... 9 2-1-5 衛星位置 ............................................................. 11 2-1-6 衛星仰角 ............................................................. 13 2-2 星下點位置 ............................................................. 15 2-3 軌道與星座 ............................................................. 15 2-4 本章小結 ............................................................... 20 第三章 衛星導航系統現況 .................................................... 21 3-1 全球導航衛星系統 ....................................................... 21 3-1-1 GPS .................................................................. 21 3-1-2 GLONASS .............................................................. 23 3-1-3 Galileo .............................................................. 24 3-1-4 Compass/Beidou-2 ..................................................... 25 3-2 區域導航衛星系統 ....................................................... 27 3-2-1 BeiDou-1 ............................................................. 27 3-2-2 QZSS ................................................................. 27 3-2-3 IRNSS ................................................................ 28 3-3 星基增強系統 ........................................................... 29 3-3-1 WAAS ................................................................. 30 3-3-2 EGNOS ................................................................ 30 3-3-3 MSAS(Multi-functional Satellite Augmentation System) ................. 30 3-3-4 GAGAN ................................................................ 31 3-4 本章小結 ............................................................... 31 第四章 軟體模擬器之介紹 .................................................... 32 4-1 模擬器架構 ............................................................. 32 4-2 星群模擬 ............................................................... 33 4-2-1 各種星曆介紹 ......................................................... 33 4-3 分析方法 ............................................................... 37 4-4 性能指標 ............................................................... 37 4-4-1 DOP 值 ............................................................... 38 4-4-2 內可靠度與外可靠度 ................................................... 42 4-4-3 星座值CV ( Constellation Value) ...................................... 43 4-4-4 可得度(Availability) ................................................. 44 4-5 本章小結 ............................................................... 45 第五章 區域導航系統之星座設計 .............................................. 46 5-1 星座設計的基本過程和準則 ............................................... 46 5-2 模擬範圍 ............................................................... 48 5-3 星座設計 ............................................................... 49 5-3-1 七顆衛星之星座 ....................................................... 65 5-3-2 八顆衛星之星座 ....................................................... 74 5-3-3 九顆衛星之星座 ....................................................... 75 5-4 本章小結 ............................................................... 77 第六章 結果與討論 .......................................................... 78 6-1 基本需求 ............................................................... 78 6-2 可視衛星數、PDOP 值以及CV 值之結果 ..................................... 78 6-2-1 可視仰角10 度 ........................................................ 78 6-2-2 可視仰角20 度 ........................................................ 87 6-2-3 可視仰角30 度 ........................................................ 92 6-3 其他效能評估結果 ....................................................... 98 6-3-1 GPS .................................................................. 99 6-3-2 COMPASS_GSO .......................................................... 121 6-3-3 IRNSS_T .............................................................. 131 6-3-4 方案10 ............................................................... 142 6-3-5 RNSS323 .............................................................. 150 6-3-6 方案21 ............................................................... 165 6-3-7 八星方案2 ............................................................ 186 6-3-8 九星方案4 ............................................................ 196 6-4 GPS+九星方案4 之效能分析 ............................................... 218 6-5 本章小結 ............................................................... 249 第七章 結論與建議 .......................................................... 250 7-1 結論 ................................................................... 250 7-2 未來建議事項 ........................................................... 250 參考文獻 ................................................................... 253

    [1] Baarda, W., 1967, Statistical Concepts in Geodesy, Netherlands Geodetic Commission, Geodesy, Delft.
    [2] Ballester-G?rpide, ?., Herr?iz-Monseco, E., Juez-Mu?oz, A., Romay-Merino, M. M., and Beech, T. W., 2000, Future GNSS Constellation Performances inside Urban Environments ION GPS 2000, Salt Lake City, UT.
    [3] Chiang, K. W., Yang, M., Tsai, M. L., Chang, Y. Y., and Chu, C. K., 2006, The Technical Benefits of Future GNSS for Taiwan, IAIN/GNSS2006, Jeju, Korea, pp. 3-8.
    [4] Chin, G. Y., Kraemer, J. H., and Grover Brown, R., 1992, GPS RAIM: screening out bad geometries under worst-case bias conditions, Navigation(Washington, DC), vol. 39, no. 4, pp. 407-427.
    [5] EC, 2003, The Galilei project: GALILEO Design Consolidation, Online available at : http://europa.eu.int/comm./dgs/energy_transport, European Commission.
    [6] FSARF, 2005, GLONASS: Status and Perspectives: Munich Satellite Navigation Summit, Federal Space Agency for the Russian Federation, Munich.
    [7] Hein, G., 2000, From GPS and GLONASS via EGNOS to Galileo-Positioning and Navigation in the Third Millennium, GPS Solutions, vol. 3, no. 4, pp. 39-47.
    [8] Hein, G., 2007, Envisioning a Future GNSS System of Systems Part 1, Inside GNSS, vol. 2, no. 1, pp. 58-67.
    [9] Hein, G. W., Godet, J. I., Jean-Luc, M., Jean-Christophe, E., Philippe, L., Rafael, K., and Pratt, T., 2002, Status of Galileo Frequency & Signal Design, Institute of Navigation (ION) GPS 2002 meeting, Oregon Convention Center, Portland, Oregon, USA, pp. 24-27.
    [10] Hofmann-Wellenhof, B., Lichtenmgger, H., and Wasle, E., 2006, GNSS Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more, Austria, Springer.
    [11] Huang, Y. S., and Tsai, M. L., 2008, The Impact of Compass/Beidou-2 on Future GNSS: A Perspective from Asia (EI), ION GNSS 2008, Savannah, Georgia.
    [12] Kogure, S., Kishimoto, M., and Sawabe, M., 2007, Future Expansion from QZSS to Regional Satellite Navigation System, ION NTM 2007, San Diego, CA.
    [13] Massatt, P., and Zitzew, M., 1998, GPS Constellation Design-Current and Projected, ION National Tectical Meeting, pp. 435-445.
    [14] Miller, J., 2007, Global Positioning System Policy and Program Update, ION GNSS 2007, Fort Worth Convention Center, Fort Worth, TX.
    [15] Misra, P., and Enge, P., 2006, Global Positioning System: Signals, Measurements & Performance, Second Edition, Lincoln, Massachusetts, Ganga-Jamuna.
    [16] Montenbruck, O., and Gill, E., 2005, Satellite Orbits - Models, Methods, Applications, 3rd, Berlin Heidelberg, Springer-Verlag.
    [17] Pullen, S., and Enge, P., 2004, A Civil User Perspective on Near-Term and Long-Term GPS Modernization, Text GPS/GNSS Symp, pp. 3-13.
    [18] Romay-Merino, M. M., Samper, M. D. L., Alarc?n, ?. J. G., and Quijada, A. G., 2007, Autonomous Low Cost Regional Navigation Satellite Systems Based on Geosynchronous Eccentric and Inclined Orbits, ION GNSS 2007, Fort Worth, Texas, pp. 3025-3036.
    [19] Seeber, G., 1993, Satellite Geodesy : Foundations, methods, and applications, Berlin, Germany, Walter de Gruyter & Co.
    [20] Singh, S., and Saraswati, S. K., 2006, India Heads for a Regional Navigational Satellite System, Coordinates, vol. 2, no. 11, pp. 6-8.
    [21] SPS, 2001, Global Positioning System Standard Positioning Service Signal Specification, U.S. Department of Defense.
    [22] Sturza, M. A., 1988, Navigation System Integrity Monitoring Using Redundant Measurements, Navigation, vol. 35, no. 4, pp. 483-501.
    [23] Tsai, M.-L., Chiang, K.-W., Yang, M., and Chen, H.-C., 2007, The Accuracy and Reliability Analysis for Future GNSS in Taiwan Region, The 28th Asian conference on remote sensing(ACRS2007), Kuala Lumpur, Malaysia.
    [24] van Diggelen, F., and Brown, A., 1994, Mathematical aspects of GPS RAIM, Position Location and Navigation Symposium, 1994., IEEE, pp. 733-738.
    [25] Verhagen, S., 2005, The GNSS integer ambiguities: estimation and validation, Ph.D dissertation, Delft University of Technology, Nederland.
    [26] Walker, J. G., 1970, Circular Orbit Patterns Providing Continous Whole Earth Coverage , Rayal Aircraft Establishment Technical Report 70211.
    [27] Wu, F., Zhang, K., Yasuda, A., and Fan, S., 2005, An Investigation of GPS Augmentation Using Japanese Quasi-Zenith Satellite System in Australia, Proceedings of Spatial Sciences Institute Biennial Conference, pp. 12-16.
    [28] YongCheol, S. U. H., 2007, Evaluation of Satellite-Based Navigation Services in Complex Urban Environments Using a Three-Dimensional GIS, IEICE Transactions on Communications, vol. E90-B, pp. 1816-1825.
    [29] 尤瑞哲, 2003, 測量座標系統 第二版, 台南, 國立成功大學.測量與空間資訊學系.
    [30] 付鋒, 2001, 局域衛星導航系統的星座設計, 通信與信息系統, 碩士學位論文,南京大學.
    [31] 胡松杰, 2003, 衛星星座的動力學研究, 天文學、天體測量與天體力學, 博士學位論文, 南京大學.
    [32] 胡劍浩、吳詩其、馮剛, 1994, 中軌移動衛星通訊系統星座方案研究, 電子科技大學學報, vol. 23, no. 6, pp. 561-566.
    [33] 胡劍浩、吳詩其、馮剛, 1996, 中國低軌移動衛星通訊系統星座方案研究, 電子科技大學學報, vol. 24, no. 7, pp. 12-16.
    [34] 張更新, 1996, 衛星移動通信系統軌道高度的研究, 通信學報, vol. 17, no. 6, pp. 111-114.
    [35] 楊名、江凱偉, 2007, 全球導航衛星系統(GNSS)資料聯合處理技術報告書, 內政部土地測量局/國立成功大學衛星資訊研究中心.
    [36] 廖笠、吳詩其、胡劍浩, 1994, 移動衛星通信系統低橢圓軌道星座設計, 電子科技大學學報, vol. 23, no. 5, pp. 449-455.
    [37] 劉會杰, 2000, 區域衛星定位系統星座的設計及效能研究, 通信與信息系統, 博士學位論文, 哈爾濱工業大學.

    下載圖示 校內:立即公開
    校外:2008-08-25公開
    QR CODE