| 研究生: |
周容光 Chou, Jung-Kuang |
|---|---|
| 論文名稱: |
雷暴系統的向上放電現象 Upward Discharges from the Electrified Thunderstorm |
| 指導教授: |
許瑞榮
Hsu, Rue-Ron |
| 共同指導教授: |
蘇漢宗
Su, Han-Tzong |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 166 |
| 中文關鍵詞: | 高空短暫發光事件 、雙極性窄脈衝事件 |
| 外文關鍵詞: | transient luminous events, narrow bipolar events |
| 相關次數: | 點閱:117 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
雷暴系統的向上放電現象在近二十年才被記錄到影像,因為他們的外形類似噴泉的圓錐體所以被命名為噴流事件。噴流事件被歸類在高空短暫發光現象,其為介於雷暴系統頂部至電離層底部的大尺度發光現象。依據放電抵達的高度噴流事件主要分成blue starter、藍色噴流以及巨大噴流。自從2004年5月福爾摩沙衛星二號升空後,其科學酬載“高空大氣閃電影像儀(Imager of Sprites and Upper Atmospheric Lightning, ISUAL)”持續地進行全球性的高空短暫發光現象觀測。至2015年6月30日,ISUAL紀錄了接近100個巨大噴流,其被認定建立了直接連接雷暴系統頂部至電離層底部的通道。除了典型帶負電荷往上放電的巨大噴流之外,另外還有兩種類型的巨大噴流。第一類型巨大噴流的動態發展類似於地面觀測到的帶負電荷往上放電的巨大噴流。由電磁波訊號,第一類型巨大噴流認定為帶負電荷從雲頂至電離層的放電。第二類型巨大噴流的動態發展一開始為藍色噴流再慢慢往上形成巨大噴流,被猜測為介於雷暴系統上層正電荷層與負電荷屏蔽層之間所觸發的藍色噴流類型之放電。光度的特性指出第二類型巨大噴流是由正流束所組成,更進一步的天電訊號分析顯示一個ISUAL所紀錄的第二類型巨大噴流為帶正電荷往上的放電。第三類型巨大噴流則是在閃電發生之後靠近閃電的位置附近所發展的巨大噴流,其放電極性猜測與觸發閃電所造成的電荷不平衡有關。
2007年7月22日由地面觀測拍攝到38個發生於雷暴系統之上的噴流事件,其中一個事件為第二類型巨大噴流,此為第一個由地面觀測所記錄到的第二類型巨大噴流。由裝載不同濾鏡的攝影機所記錄的影像,噴流事件被發現有清楚的紅光,而他們的藍光幾乎被大氣散射所以在影像中無法分辨。由理論估計流束的發光,結果顯示在blue starter以及藍色噴流上方區域的紅光主要來自氮氣第一正則譜系。因為在噴流事件發生之期間,相同雷暴系統所產生的閃電之天電訊號沒有被記錄到,噴流事件與閃電活動的關聯性則由影像中雲內閃電或是對地閃電所造成雲的發光來分析。分析結果顯示兩者的關聯性相當複雜,有些噴流事件的出現會受先前發生在當地的對地閃電或者鄰近的雲內或對地閃電影響,而有些噴流事件的出現則可能影響後續發生的閃電活動。
ISUAL紀錄了許多神秘的藍色發光事件,它們輻射明顯的中紫外光至藍光(230−450 nm)以及暗淡的紅光(653−754 nm)。大多數的藍色發光事件在ISUAL所紀錄的影像中呈現小亮點狀,一小部分的事件則往上且緩慢地發展,最終成為藍色噴流或者第二類型巨大噴流。對應於藍色發光事件的極低頻至甚低頻波段以及低頻波段的天電訊號,其波形與甚低頻至低頻波段的雙極窄脈衝事件之波形相似,推測ISUAL的藍色發光事件應是與雙極窄脈衝事件類似的事件所伴隨的發光。藍色發光事件中有對應正與反二種極性的放電;由天電訊號與ISUAL光學資料,藍色發光事件與雷暴系統中初始放電的快速電流有關,而藍色噴流或第二型巨大噴流,則推測與後續緩慢地變化的放電電流有關。藍色發光事件的光譜特性顯示發光主要來自由局域增強的電場所產生之非熱平衡大氣電漿,而非來自局域熱力平衡的高溫大氣電漿。
The upward discharges from the electrified thunderstorms have only been recorded about two decades ago. They are termed as jets because of their fountain-like cone shapes. Jets are members of the transient luminous events (TLEs) which are large-scale transient optical phenomena occurring between the top of the thunderstorms and the lower ionosphere. Characterized by their terminating altitudes, the prominent family of jets includes blue starters, blue jets (BJs), and gigantic jets (GJs). The ISUAL (Imager of Sprites and Upper Atmospheric Lightning) experiment on the FORMOSAT-2 satellite has continuously and globally surveyed TLEs from space since it was launched in May 2004. As of 30 June 2015, ISUAL has recorded nearly a hundred gigantic jets, which are believed to establish a direct discharge channel between the thunderstorm top and the lower ionosphere. Besides the known class of negative GJs, which are called type I, the data reveal that there are two additional kinds of gigantic jets. The dynamic evolution of the type I GJs resembles that of the negative GJs observed from the ground. Based on the electromagnetic data, type I GJs are identified as negative cloud‐to‐ionosphere‐discharge events (−CIs). The dynamic evolution of a type II GJ starts as a blue jet then slowly develops into a GJ. The type II GJs are conjectured to be blue-jet-type discharges that initiate between the upper positive charge layer and the negative screen charge layer in a thunderstorm. Photometric features indicate that type II GJs are composed of positive streamers. A further analysis of the associated atmospherics (also called sferics) of one ISUAL recorded type II GJ indicates that this GJ is a positive upward discharge. Type III GJs were preceded by lightning, and a GJ subsequently occurred near this preceding lightning. The discharge polarity of the type III GJs is expected to vary and depends on the charge imbalance left behind by the trigger lighting.
On 22 July 2007, thirty-eight jets occurring over a thunderstorm were recorded during a ground campaign. One of them is a type II GJ, which was the first GJ of this type that was recorded from the ground. Based on the images recorded by a cluster of filter‐equipped cameras, the jets are found to have significant red emissions. However, the blue emissions from these jets were not discernible due to severe atmospheric scattering. A modeling estimation of the emissions from a streamer reveals that the red emissions originated in the upper parts of blue starters and blue jets would be mainly from the first positive system of N2 (1PN2). Since no lightning‐associated sferics from this thunderstorm during the jet‐generating period were found, correlation patterns between the jets and the lightning activity are analyzed from the illumination of clouds due to intra-cloud (ICs) and cloud-to-ground (CGs) lightning. The correlation patterns exhibit considerable complexity but also indicate that the occurrence of jets can be affected by the preceding local CG lightning or nearby lightning (IC or CG), while in turn the jets might also influence the ensuing lightning activity.
ISUAL has recorded many mystic blue luminous events (BLEs) that emit clear middle ultraviolet to blue emissions (230−450 nm) but contain dim red emissions (653−754 nm). Most BLEs appear to be dot-like on the ISUAL images, and a few BLEs develop upwardly and slowly into blue jets or type II GJs. The associated sferics of the BLEs in the extremely low frequency to the very low frequency (ELF/VLF) band and the low frequency (LF) band exhibit similar features to those of the VLF/LF waveform for the narrow bipolar events (NBEs). The ISUAL BLE is conjectured to be the accompanied light emissions of the NBE-like event. Both positive and negative discharge polarity-types for the BLEs have been found. Based on the sferics data and the ISUAL optical data, a NBE-like event is found to be related to a rapidly-flowing current of the initiation discharge in the thunderstorm, while a blue jet or a type II GJ is suggested to be associated with the slowly-varying current of the ensuing discharge. The spectral characteristics of BLEs resemble those of the emissions mostly from the non-thermal air plasmas produced by the locally-enhanced electric field, rather than those from the hot air plasmas in local thermodynamic equilibrium (LTE).
Adachi, T., et al. (2008), Electric fields and electron energies in sprites and temporal evolutions of lightning charge moment measurements, J. Phys. D Appl. Phys., 41(23), 234010.
Adachi, T., H. Fukunishi, Y. Takahashi, Y. Hiraki, R. R. Hsu, H. T. Su, A. B. Chen, S. B. Mende, H. U. Frey, and L. C. Lee (2006), Electric field transition between the diffuse and streamer regions of sprites estimated from ISUAL/array photometer measurements, Geophys. Res. Lett., 33, L17803, doi:10.1029/2006GL026495.
Amburn, S. A., and P. L. Wolf (1997), VIL density as a hail indicator, Weather Forecasting, 12, 473–478, doi:10.1175/1520-0434(1997) 012<0473:VDAAHI>2.0.CO;2.
Arabshahi, S., J. R. Dwyer, A. Nag, V. A. Rakov, and H. K. Rassoul (2014), Numerical simulations of compact intracloud discharges as the relativistic Runaway Electron Avalanche-Extensive Air Shower process, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA018974.
Armstrong, R. A., D. M. Suszcynsky, W. A. Lyons, and T. E. Nelson (2000), Multi‐color photometric measurements of ionization and energies in sprites, Geophys. Res. Lett., 27(5), 653–656, doi:10.1029/1999GL003672.
Armstrong, R. A., J. A. Shorter, M. J. Taylor, D. M. Suszcynsky, W. A. Lyons, and L. S. Jeong (1998), Photometric measurements in the sprites’ 95 & ‘96 campaigns of nitrogen second positive (399.8 nm) and first negative (427.8 nm) emissions, J. Atmos. Sol. Terr. Phys., 60(7–9), 787–799, doi:10.1016/S1364-6826(98)00026-1.
Barrington-Leigh, C. P., and U. S. Inan (1999), Elves triggered by positive and negative lightning discharges, Geophys. Res. Lett., 26(6), 683–686, doi:10.1029/1999GL900050.
Barrington-Leigh, C. P., U. S. Inan, and M. Stanley (2001), Identification of sprites and elves with intensified video and broadband array photometry, J. Geophys. Res., 106, 1741–1750, doi:10.1029/2000JA000073.
Bazelyan, E. M., and Y. P. Raizer (1998), Spark Discharge, 294 pp., CRC Press, New York.
Bazelyan, E. M., and Y. P. Raizer (2000), Lightning Physics and Lightning Protection, 325 pp., Inst. of Phys. Publ., Bristol, U. K., doi:10.1887/0750304774.
Bell, T. F., S. C. Reising, and U. S. Inan (1998), Intense continuing currents following positive cloud-to-ground lightning associated with red sprites, Geophys. Res. Lett., 25, 1285.
Bering, E. A., III, J. R. Benbrook, J. A. Garrett, A. M. Paredes, E. M. Wescott, D. R. Moudry, D. D. Sentman, H. C. Stenbaek-Nielsen, and W. A. Lyons (2002), The electrodynamics of sprites, Geophys. Res. Lett., 29(5), 1064, doi:10.1029/2001GL013267.
Bering, E. A., III, J. R. Benbrook, L. Bhusal, J. A. Garrett, A. M. Paredes, E. M. Wescott, D. R. Moudry, D. D. Sentman, H. C. Stenbaek-Nielsen, and W. A. Lyons (2004), Observations of transient luminous events (TLEs) associated with negative cloud to ground (–CG) lightning strokes, Geophys. Res. Lett., 31, L05104, doi:10.1029/2003GL018659.
Biloiu, C., X. Sun, Z. Harvey, and E. Scime (2007), An alternative method for gas temperature determination in nitrogen plasmas: Fits of the bands of the first positive system (B3Πg->A3Σu+), J. Appl. Phys., 101(073), 303.
Blanc, E., T. Farges, R. Roche, D. Brebion, T. Hua, A. Labarthe, and V. Melnikov (2004), Nadir observations of sprites from the International Space Station, J. Geophys. Res., 109, A02306, doi:10.1029/2003JA009972.
Boccippio, D. J., E. R. Williams, S. J. Heckman, W. A. Lyons, I. T. Baker, and R. Boldi (1995), Sprites, ELF transients, and positive ground strokes, Science, 269(5227), 1088– 1091.
Boeck, W. L., O. H. Vaughan, R. J. Blakeslee, B. Vonnegut, and M. Brook (1992), Lightning induced brightening in the airglow layer, Geophys. Res. Lett., 19, 99–102.
Boeck, W. L., O. H. Vaughan, R. J. Blakeslee, B. Vonnegut, and M. Brook (1998), The role of the space shuttle videotapes in the discovery of sprites, jets and elves, J. Atmos. Sol. Terr. Phys., 60, 669–677.
Boeck, W. L., O. H. Vaughan, R. J. Blakeslee, B. Vonnegut, M. Brook, and J. McKune (1995), Observations of lightning in the stratosphere, J. Geophys. Res., 100, 1465–1475.
Bonaventura, Z., A. Bourdon, S. Celestin, and V. P. Pasko (2011), Electric field determination in streamer discharges in air at atmospheric pressure, Plasma Source Sci. Technol., 20, 035012, 10 pp., doi:10.1088/0963-0252/20/3/035012.
Briels, T. M. P., J. Kos, G. J. J. Winands, E. M. van Veldhuizen, and U. Ebert (2008), Positive and negative streamers in ambient air: Measuring diameter, velocity and dissipated energy, J. Phys. D Appl. Phys., 41, 234004, doi:10.1088/0022-3727/41/23/234004.
Bucsela, E., J. Morrill, M. Heavner, C. Siefring, S. Berg, D. Hampton, D. Moudry, E. Wescott, and D. Sentman (2003), N2 (B3Πg) and N2+(A2Πu) vibrational distributions observed in sprites, J. Atmos. Sol. Terr. Phys., 65(5), 583–590, doi:10.1016/S1364-6826(02)00316-4.
Calo, J. M., and R. C. Axtmann (1971), Vibrational Relaxation and Electronic Quenching of the C3Πu (v' = 1) State of Nitrogen, J. Chem. Phys., 54, 1332–41.
Celestin, S., and V. P. Pasko (2010), Effects of spatial non‐uniformity of streamer discharges on spectroscopic diagnostics of peak electric fields in transient luminous events, Geophys. Res. Lett., 37, L07804, doi:10.1029/2010GL042675.
Celestin, S., and V. P. Pasko (2011), Energy and fluxes of thermal runaway electrons produced by exponential growth of streamers during the stepping of lightning leaders and in transient luminous events, J. Geophys. Res., 116, A03315, doi:10.1029/2010JA016260.
Chang, S. C., C. L. Kuo, L. J. Lee, A. B. Chen, H. T. Su, R. R. Hsu, H. U. Frey, S. B. Mende, Y. Takahashi, and L. C. Lee (2010), ISUAL far‐ultraviolet events, elves, and lightning current, J. Geophys. Res., 115, A00E46, doi:10.1029/2009JA014861.
Chen, A. B., et al. (2008), Global distributions and occurrence rates of transient luminous events, J. Geophys. Res., 113, A08306, doi:10.1029/2008JA013101.
Chen, A. B., Y. J. Wu, C. Y. Chiang, Y. C. Huang, C. L. Kuo, H. T. Su, R. R. Hsu, S. B. Mende, H. U. Frey, S. E. Harris, Y. Takahashi, and L. C. Lee (2012), Sensitivity degradation of ISUAL instruments and its impact on observations, Terr. Atmos. Ocean. Sci., 23, 71–83, doi:10.3319/TAO.2011.06.20.01(AA)
Chen, A. B.-C., H.-T. Su, and R.-R. Hsu (2014), Energetics and geographic distribution of elve-producing discharges, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019470.
Chen, F. F. (1984), Introduction to plasma physics and controlled fusion, 2nd ed., Plenum Press, New York.
Chern, J. L., R. R. Hsu, H. T. Su, S. B. Mende, H. Fukunishi, Y. Takahashi, and L. C. Lee (2003), Global survey of upper atmospheric transient luminous events on the ROCSAT‐2 satellite, J. Atmos. Sol. Terr. Phys., 65(5), 647–659, doi:10.1016/S1364-6826(02)00317-6.
Chou, J. K., et al. (2010), Gigantic jets with negative and positive polarity streamers, J. Geophys. Res., 115, A00E45, doi:10.1029/2009JA014831.
Chou, J. K., L. Y. Tsai, C. L. Kuo, Y. J. Lee, C. M. Chen, A. B. Chen, H. T. Su, R. R. Hsu, P. L. Chang, and L. C. Lee (2011), Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign, J. Geophys. Res., 116, A07301, doi:10.1029/2010JA016162.
Colgate, S. A. (1967), Enhanced drop coalescence by electric fields in equilibrium with turbulence, J. Geophys. Res., 72, 2, 479–487.
Colman, J. J., R. A. Roussel‐Dupré, and L. Triplett (2010), Temporally self‐similar electron distribution functions in atmospheric breakdown: The thermal runaway regime, J. Geophys. Res., 115, A00E16, doi:10.1029/2009JA014509.
Cummer, S. A., and U. S. Inan (1997), Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics, Geophys. Res. Lett., 24, 1731–1734.
Cummer, S. A., J. Li, F. Han, G. Lu, N. Jaugey, W. A. Lyons, and T. E. Nelson (2009), Quantification of the troposphere‐to‐ionosphere charge transfer in a gigantic jet, Nat. Geosci., 2, 617–620, doi:10.1038/ngeo607.
Cummer, S. A., U. S. Inan, T. F. Bell, and C. P. Barrington-Leigh (1998), ELF radiation produced by electrical currents in sprites, Geophys. Res. Lett., 25(8), 1281– 1284.
da Silva, C. L., and V. P. Pasko (2012), Simulation of leader speeds at gigantic jet altitudes, Geophys. Res. Lett., 39, L13805, doi:10.1029/2012GL052251.
da Silva, C. L., and V. P. Pasko (2013a), Vertical structuring of gigantic jets, Geophys. Res. Lett., 40, 3315–3319, doi:10.1002/grl.50596.
da Silva, C. L., and V. P. Pasko (2013b), Dynamics of streamer-to-leader transition at reduced air densities and its implications for propagation of lightning leaders and gigantic jets, J. Geophys. Res. Atmos., 118, 13,561–13,590, doi:10.1002/2013JD020618.
Dilecce, G., P. F. Ambrico, and S. De Benedictis (2010), On the collision quenching of N2+ (B2Σu+, v = 0) by N2 and O2 and its influence on the measurement of E/N by intensity ratio of nitrogen spectral bands, J. Phys. D: Appl. Phys., 43, 195201, doi:10.1088/0022-3727/43/19/195201.
Dilecce, G., P. F. Ambrico, S. De Benedictis (2006), OODR-LIF direct measurement of N2 (C3Πu, v = 0–4) electronic quenching and vibrational relaxation rate coefficients by N2 collision, Chem. Phys. Let., 431, 241–246, doi:10.1016/j.cplett.2006.09.094.
Dwyer, J. R., and M. A. Uman (2014), The physics of lightning, Physics Reports, 534, 147–241, doi:10.1016/j.physrep.2013.09.004.
Ebert, U., C. Montijn, T. M. P. Briels, W. Hundsdorfer, B. Meulenbroek, A. Rocco, and E. M. van Veldhuizen (2006), The multiscale nature of streamers, Plasma Sources Sci. Technol., 15, S118–S129.
Ebert, U., S. Nijdam, C. Li, A. Luque, T. Briels, and E. van Veldhuizen (2010), Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning, J. Geophys. Res., 115, A00E43, doi:10.1029/2009JA014867.
Edens, H. E. (2011), Photographic and lightning mapping observations of a blue starter over a New Mexico thunderstorm, Geophys. Res. Lett., 38, L17804, doi:10.1029/2011GL048543.
Fierro, A. O., X.-M. Shao, T. Hamlin, J. M. Reisner, and J. Harlin (2011), Evolution of Eyewall Convective Events as Indicated by Intracloud and Cloud-to-Ground Lightning Activity during the Rapid Intensification of Hurricanes Rita and Katrina, Monthly Weather Review, 139, 1492–1504, DOI: 10.1175/2010MWR3532.1.
Franz, R. C., R. J. Nemzek, and J. R. Winckler (1990), Television image of a large upward electric discharge above a thunderstorm system, Science, 249, 48–51.
Frey, H. U., et al. (2007), Halos generated by negative cloud-to-ground lightning, Geophys. Res. Lett., 34, L18801, doi:10.1029/2007gl030908.
Fukunishi, H., Y. Takahashi, M. Kubota, K. Sakanoi, U. S. Inan, and W. A. Lyons (1996), Elves: Lightning‐induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., 23, 2157–2160.
Gallimberti, I. (1979), The mechanism of the long spark formation, J. Phys. Coll., 40(C7), 193–250.
Gallimberti, I., G. Bacchiega, A. Bondiou-Clergerie, and P. Lalande (2002), Fundamental processes in long air gap discharges, C. R. Phys., 3, 1335–1359, doi:10.1016/S1631-0705(02)01414-7.
Gallimberti, I., J. K. Hepworth, and R. C. Klewe (1974), Spectroscopic investigation of impulse corona discharges, J. Phys. D: Appl. Phys., 7,880, doi:10.1088/0022-3727/7/6/315.
Garipov, G. K., et al. (2013), Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite, J. Geophys. Res. Atmos., 118, 370–379, doi:10.1029/2012JD017501.
Gerken, E. A., and U. S. Inan (2002), A survey of streamer and diffuse glow dynamics observed in sprites using telescopic imagery, J. Geophys. Res., 107(A11), 1344, doi:10.1029/2002JA009248.
Gerken, E. A., and U. S. Inan (2004), Comparison of photometric measurements and charge moment estimations in two sprite-producing storms, Geophys. Res. Lett., 31, L03107, doi:10.1029/2003GL018751
Gerken, E. A., U. S. Inan, and C. P. Barrington-Leigh (2000), Telescopic imaging of sprites, Geophys. Res. Lett., 27(17), 2637.
Gilmore, F. R., R. R. Laher, and P. J. Espy (1992), Franck-Condon Factors, r-Centroids, Electronic Transition Moments, and Einstein Coefficients for Many Nitrogen and Oxygen Band Systems, J. Phys. Chern. Ref. Data, 21(5), 1005–1107.
Green, B. D., et al. (1996), Molecular excitation in sprites, Geophys. Res. Lett., 23(16), 2161–2164, doi:10.1029/96GL02071.
Griffiths, R. F., and C. T. Phelps (1976), A model for lightning initiation arising from positive corona streamer development, J. Geophys. Res., 81(21), 3671– 3676.
Gurevich, A. V., and A. N. Karashtin (2013), Runaway breakdown and hydrometeors in lightning initiation, Phys. Rev. Lett., 110, 185005, doi: 10.1103/PhysRevLett.110.185005.
Gurevich, A. V., and K. P. Zybin (2004), High energy cosmic ray particles and the most powerful discharges in thunderstorm atmosphere, Phys. Lett. A, 329(4– 5), 341– 347.
Gurevich, A. V., G. M. Milikh, and R. Roussel-Dupre (1992), Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm, Phys. Lett. A, 165, 463– 468.
Gurevich, A. V., K. P. Zybin, and R. A. Roussel-Dupre (1999), Lightning initiation by simultaneous effect of runaway breakdown and cosmic ray showers, Phys. Lett. A, 254, 79–87.
Hagelaar, G. J. M., and L.C. Pitchford (2005), Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sci. Sources Tech., 14, 722, doi:10.1088/0963-0252/14/4/011.
Hampton, D. L., M. J. Heavner, E. M. Wescott, and D. D. Sentman (1996), Optical spectral characteristics of sprites, Geophys. Res. Lett., 23(1), 89–92, doi:10.1029/95GL03587.
Hardman, S. F., R. L. Dowden, J. B. Brundell, J. L. Bahr, Z. Kawasaki, and C. J. Rodger (2000), Sprite observations in the Northern Territory of Australia, J. Geophys. Res., 105(D4), 4689–4697, doi:10.1029/1999JD900325.
Harris, S. (2000), ISUAL System Design Review: ISUAL Imager, Space Sciences Laboratory, UCB, Berkeley, CA.
Harris, S. (2003a), ISUAL Imager Science Performance Test Report, Space Sciences Laboratory, UCB, Berkeley, CA, Doc. 8988-W7 rev B.
Harris, S. (2003b), ISUAL Spectrophotometer Science Performance Test Report, Space Sciences Laboratory, UCB, Berkely, CA, Doc. 8998-W7 rev B.
Heavner, M. J. (2000), Optical spectroscopic observations of sprites, blue jets, and elves: Inferred microphysical processes and their macrophysical implications, PhD thesis, Univ. of Alaska Fairbanks, Fairbanks.
Heavner, M. J., J. S. Morrill, C. Siefring, D. D. Sentman, D. R. Moudry, E. M. Wescott, and E. J. Bucsela (2010), Near-ultraviolet and blue spectral observations of sprites in the 320–460 nm region: N2 (2PG) emissions, J. Geophys. Res., 115, A00E44, doi:10.1029/2009JA014858.
Hsu, C. L. (2009), Calibration of the BF-4 Magnetic Field Induction Sensor and the Algorithm of Lightning Related Charge Moment, Master’s thesis, National Cheng Kuang University, Tainan, Taiwan.
Hsu, R. R., H. T. Su, A. B. Chen, L. C. Lee, M. Asfur, C. Price, and Y. Yair (2003), Transient luminous events in the vicinity of Taiwan, J. Atmos. Sol. Terr. Phys., 65, 561–566, doi:10.1016/S1364-6826(02)00320-6.
Hu, W., S. A. Cummer, and W. A. Lyons (2007), Testing sprite initiation theory using lightning measurements and modeled electromagnetic fields, J. Geophys. Res., 112, D13115, doi:10.1029/2006JD007939.
Hu, W., S. A. Cummer, W. A. Lyons, and T. E. Nelson (2002), Lightning charge moment changes for the initiation of sprites, Geophys. Res. Lett., 29(8), 1279, doi:10.1029/2001GL014593.
Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong (1999), Criteria for sprites and elves based on Schumann resonance observations, J. Geophys. Res., 104(D14), 16,943–16,964, doi:10.1029/1999JD900139.
Huang, S.-M. (2013), ULF and ELF/VLF Electromagnetic Signatures of Transient Luminous Events, PhD. thesis, National. Cheng Kung Univ., Taiwan.
Huang, S.-M., C.-L. Hsu, A. B. Chen, J. Li, L.-J. Lee, G.-L. Yang, Y.-C. Wang, R.-R. Hsu, and H.-T. Su (2011), Effects of notch-filtering on the ELF sferics and the physical parameters, Radio Sci., 46, RS5014, doi:10.1029/2010RS004519.
Huang, S.-M., R.-R. Hsu, L.-J. Lee, H.-T. Su, C.-L. Kuo, C.-C. Wu, J.-K. Chou, S.-C. Chang, Y.-J. Wu, and A. B. Chen (2012), Optical and radio signatures of negative gigantic jets: Cases from Typhoon Lionrock (2010), J. Geophys. Res., 117, A08307, doi:10.1029/2012JA017600.
Inan, U. S., and A. S. Inan (2000), Electromagnetic Waves, 556 pp., Prentice Hall Inc., New Jersey.
Inan, U. S., C. Barrington‐Leigh, S. Hansen, V. S. Glukhov, T. F. Bell, and R. Rairden (1997), Rapid lateral expansion of optical luminosity in lightning‐induced ionospheric flashes referred to as ‘elves’, Geophys. Res. Lett., 24, 583–586.
Inan, U. S., T. F. Bell, and J. V. Rodriguez (1991), Heating and ionization of the lower ionosphere by lightning, Geophys. Res. Lett., 18(4), 705–708.
Israelevich, P. L., Y. Yair, A. D. Devir, J. H. Joseph, Z. Levin, I. Mayo, M. Moalem, C. Price, B. Ziv, and A. Sternlieb (2004), Transient airglow enhancements observed from the space shuttle Columbia during the MEIDEX sprite campaign, Geophys. Res. Lett., 31, L06124, doi:10.1029/2003GL019110.
Jacobson, A. R. (2003), How do the strongest radio pulses from thunderstorms relate to lightning flashes?, J. Geophys. Res., 108(D24), 4778, doi:10.1029/2003JD003936.
Jacobson, A. R., and T. E. L. Light (2012), Revisiting “Narrow Bipolar Event” intracloud lightning using the FORTE satellite, Ann. Geophys., 30, 389–404, doi:10.5194/angeo-30-389-2012.
Jacobson, A. R., and M. J. Heavner (2005), Comparison of narrow bipolar events with ordinary lightning as proxies for severe convection, Monthly Weather Review, 133, 1144–1154.
Jacobson, A. R., T. E. L. Light, T. Hamlin, and R. Nemzek (2013), Joint radio and optical observations of the most radio-powerful intracloud lightning discharges, Ann. Geophys., 31, 563–580, doi:10.5194/angeo-31-563-2013.
Jehl, A., T. Farges, and E. Blanc (2013), Color pictures of sprites from nondedicated observation on board the International Space Station, J. Geophys. Res. Space Physics, 118, 454–461, doi:10.1029/2012JA018144.
Kanmae, T., H. C. Stenbaek‐Nielsen, M. G. McHarg, and R. K. Haaland (2010), Observation of sprite streamer head’s spectra at 10,000 fps, J. Geophys. Res., 115, A00E48, doi:10.1029/2009JA014546.
Knupp, K. R., B. Geerts, and S. J. Goodman (1998), Analysis of a small, vigorous mesoscale convective system. Part I: Formation, radar echo structure, and lightning behavior, Mon. Weather Rev., 126, 1812–1836, doi:10.1175/1520-0493(1998)126<1812:AOASVM>2.0.CO;2.
Kramida, A., Y. Ralchenko, J. Reader, and NIST AST Team (2014), NIST Atomic Spectral Database (ver. 5.2), National Institute of Standards and Technology, Gaithersburg, MD. (Available at http://physics.nist.gov/asd).
Krehbiel, P. R., J. A. Riousset, V. P. Pasko, R. J. Thomas, W. Rison, M. A. Stanley, and H. E. Edens (2008), Upward electrical discharges from thunderstorms, Nat. Geosci., 1, 233–237, doi:10.1038/ngeo162.
Krider, E. P. (1965), Time-resolved spectral emissions from individual return strokes in lightning discharges, J. Geophys. Lett., 70(10), 2459–2460.
Kuo, C. L., A. B. Chen, J. K. Chou, L. Y. Tsai, R. R. Hsu, H. T. Su, H. U. Frey, S. B. Mende, Y. Takahashi, and L. C. Lee (2008), Radiative emission and energy deposition in transient luminous events, J. Phys. D., 41, 234014, doi:10.1088/0022-3727/41/23/234014.
Kuo, C. L., et al. (2012), Full-kinetic elve model simulations and their comparisons with the ISUAL observed events, J. Geophys. Res., 117, A07320, doi:10.1029/2012JA017599.
Kuo, C. L., et al. (2013), Ionization emissions associated with N2+ 1N band in halos without visible sprite streamers, J. Geophys. Res. Space Physics, 118, 5317–5326, doi:10.1002/jgra.50470.
Kuo, C.-L., R. R. Hsu, A. B. Chen, H. T. Su, L. C. Lee, S. B. Mende, H. U. Frey, H. Fukunishi, and Y. Takahashi (2005), Electric fields and electron energies inferred from the ISUAL recorded sprites, Geophys. Res. Lett., 32, L19103, doi:10.1029/2005GL023389.
Kuo, C.‐L. (2007), Analysis of Sprites and Elves Recorded by the ISUAL Scientific Payload of FORMOSAT‐2 Satellite, PhD. thesis, National. Cheng Kung Univ., Taiwan.
Kuo, C.-L., et al. (2007), Modeling elves observed by FORMOSAT‐2 satellite, J. Geophys. Res., 112, A11312, doi:10.1029/2007JA012407.
Kuo, C.-L., et al. (2009), Discharge processes, electric field, and electron energy in ISUAL‐recorded gigantic jets, J. Geophys. Res., 114, A04314, doi:10.1029/2008JA013791.
Kutsyk, I. M., and L. Babich (1999), Spatial structure of optical emissions in the model of gigantic upward atmospheric discharges with participation of runaway electrons, Phys. Lett. A, 253, 75–82.
Lang, T. J., W. A. Lyons, S. A. Rutledge, J. D. Meyer, D. R. MacGorman, and S. A. Cummer (2010), Transient luminous events above two mesoscale convective systems: Storm structure and evolution, J. Geophys. Res., 115, A00E22, doi:10.1029/2009JA014500.
Le Vine, D. M. (1980), Sources of the strongest RF radiation from lightning, J. Geophys. Res., 85, 4091–4095.
Lee, L.-J., S.-M. Huang, J.-K. Chou, C.-L. Kuo, A. B. Chen, H.-T. Su, R.-R. Hsu, H. U. Frey, Y. Takahashi, and L.-C. Lee (2012), Characteristics and generation of secondary jets and secondary gigantic jets, J. Geophys. Res., 117, A06317, doi:10.1029/2011JA017443.
Li, J., S. A. Cummer, W. A. Lyons, and T. E. Nelson (2008), Coordinated analysis of delayed sprites with high‐speed images and remote electromagnetic fields, J. Geophys. Res., 113, D20206, doi:10.1029/2008JD010008.
Liu, N. Y., and V. P. Pasko (2004), Effects of photoionization on propagation and branching of positive and negative streamers in sprites, J. Geophys. Res., 109, A04301, doi:10.1029/2003JA010064.
Liu, N. Y., et al. (2006), Comparison of results from sprite streamer modeling with spectrophotometric measurements by ISUAL instrument on FORMOSAT-2 satellite, Geophys. Res. Lett., 33, L01101, doi:10.1029/2005GL024243.
Liu, N. Y., V. P. Pasko, K. Adams, H. C. Stenbaek‐Nielsen, and M. G. McHarg (2009b), Comparison of acceleration, expansion, and brightness of sprite streamers obtained from modeling and high‐speed video observation, J. Geophys. Res., 114, A00E03, doi:10.1029/2008JA013720.
Liu, N., N. Spiva, J. R. Dwyer, H. K. Rassoul, D. Free, and S. A. Cummer (2015), Upward electrical discharges observed above tropical depression dorian, Nat. Commu., 6, 5995, doi: 10.1038/ncomms6995.
Liu, N., V. P. Pasko, H. U. Frey, S. B. Mende, H.-T. Su, A. B. Chen, R.-R. Hsu, and L.-C. Lee (2009a), Assessment of sprite initiating electric fields and quenching altitude of a1Πg state of N2 using sprite streamer modeling and ISUAL spectrophotometric measurements, J. Geophys. Res., 114, A00E02, doi:10.1029/2008JA013735.
Lofthus, A., and P. H. Krupenie (1977), The spectrum of molecular nitrogen, J. Phys. Chem. Ref. Data, 6, 113– 307.
Lu, G., et al. (2011), Lightning development associated with two negative gigantic jets, Geophys. Res. Lett., 38, L12801, doi:10.1029/2011GL047662.
Lyons, W. A. (1994), Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video, Geophys. Res. Lett., 21, 875–878.
Lyons, W. A. (1996), Sprite observations above the U.S. high plains in relation to their parent thunderstorm systems, J. Geophys. Res., 101, 29,641–29,652.
Lyons, W. A., T. E. Nelson, R. A. Armstrong, V. P. Pasko, and M. A. Stanley (2003), Upward electrical discharges from thunderstorm tops, Bull. Am. Meteorol. Soc., 84(4), 445–454, doi:10.1175/BAMS-84-4-445.
MacGorman, D. R., and W. D. Rust (1998), The electrical nature of storms, Oxford University Press, 422 pp., New York.
Marinelli, W. J., W. J. Kessler, B. D. Green, and W. A. M. Blumberg (1989), Quenching of N2(a1Πg, v’=0) by N2, O2, CO, CO2, CH4, H2, and Ar, J. Chem. Phys., 90, 2167– 2173.
Marshall, R. A. (2012), An improved model of the lightning electromagnetic field interaction with the D-region ionosphere, J. Geophys. Res., 117, A03316, doi:10.1029/2011JA017408.
Marshall, R. A., and U. S. Inan (2005), High-speed telescopic imaging of sprites, Geophys. Res. Lett., 32, L05804, doi:10.1029/2004GL021988.
Marshall, R. A., and U. S. Inan (2006), High‐speed measurements of small-scale features in sprites: Sizes and lifetimes, Radio Sci., 41, RS6S43, doi:10.1029/2005RS003353.
Marshall, R. A., and U. S. Inan (2007), Possible direct cloud-to-ionosphere current evidenced by sprite-initiated secondary TLEs, Geophys. Res. Lett., 34, L05806, doi:10.1029/2006GL028511.
Marshall, R. A., U. S. Inan, and V. S. Glukhov (2010), Elves and associated electron density changes due to cloud-to-ground and in‐cloud lightning discharges, J. Geophys. Res., 115, A00E17, doi:10.1029/2009JA014469.
Marshall, T. C., and W. D. Rust (1991), Electric field soundings through thunderstorms, J. Geophys. Res., 96, 22,297-22,306.
McHarg, M. G., H. C. Stenbaek-Nielsen, and T. Kammae (2007), Observations of streamer formation in sprites, Geophys. Res. Lett., 34, L06804, doi:10.1029/2006GL027854.
Mende, S. B., et al. (2006), Spacecraft based studies of transient luminous events of NATO Advanced Study Institute on Sprite, Elves and Intense Lightning discharges, edited by M. Füllekrug, E. A. Mareev, and M. J. Rycroft, pp. 123–149, Springer, Netherlands.
Mende, S. B., H. U. Frey, R. R. Hsu, H. T. Su, A. B. Chen, L. C. Lee, D. D. Sentman, Y. Takahashi, and H. Fukunishi (2005), D region ionization by lightning‐induced EMP, J. Geophys. Res., 110, A11312, doi:10.1029/2005JA011064.
Mende, S. B., R. L. Rairden, G. R. Swenson, and W. A. Lyons (1995), Sprite spectra; N2 1 PG band identification, Geophys. Res. Lett., 22 (19), 2633–2636, doi:10.1029/95GL02827.
Milikh, G. M., and M. N. Shneider (2008), Model of UV flashes due to gigantic blue jets, J. Phys. D Appl. Phys., 41(23), 234013.
Milikh, G. M., M. N. Shneider, and M. S. Mokrov (2014), Model of blue jet formation and propagation in the nonuniform atmosphere, J. Geophys. Res. Space Physics, 119, doi:10.1002/2014JA020123.
Milikh, G., J. A. Valdivia, and K. Papadopoulos (1998), Spectrum of red sprites, J. Atmos. Sol. Terr. Phys., 60, 907–915.
Mitchell, K. B. (1970), Fluorescence efficiencies and collisional deactivation rates for N2 and N2+ bands excited by soft x rays, J. Chem. Phys., 53, 1795–1802.
Miyasato, R., H. Fukunishi, Y. Takahashi, and M. J. Taylor (2003), Energy estimation of electrons producing sprite halos using array photometer data, J. Atmos. Sol. Terr. Phys., 65, 573–581, doi:10.1016/S1364-6826(02)00322-X.
Miyasato, R., M. J. Taylor, H. Fukunishi, and H. C. Stenbaek-Nielsen (2002), statistical characteristics of sprite halo events using coincident photometric and imaging data, Geophys. Res. Lett., 29(21), 2033, doi:10.1029/2001GL014480.
Morrill, J., B. A. Carragher, and W. Benesch (1988), Population development of auroral molecular nitrogen species in a pulsed electric discharge, J. Geophys. Res., 93(A2), 963–977, doi:10.1029/JA093iA02p00963.
Morrill, J., et al. (2002), Electron energy and electric field estimates in sprites derived from ionized and neutral N2 emissions, Geophys. Res. Lett., 29(10), 1462, doi:10.1029/2001GL014018.
Moss, G., V. P. Pasko, N. Liu, and G. Veronis (2006), Monte Carlo model for analysis of thermal runaway electrons in streamer tips in transient luminous events and streamer zones of lightning leaders, J. Geophys. Res., 111, A02307, doi:10.1029/2005JA011350.
Moudry, D., H. Stenbaek-Nielsen, D. Sentman, and E. Wescott (2003), Imaging of elves, halos and sprite initiation at 1 ms time resolution, J. Atmos. Sol. Terr. Phys., 65, 509–518.
Nag, A., and V. A. Rakov (2010), Compact intracloud lightning discharges: 1. Mechanism of electromagnetic radiation and modeling, J. Geophys. Res., 115, D20102, doi:10.1029/2010JD014235.
Naghizadeh-Kashani, Y. Y., Cressault, and A. Gleizes (2002), Net emission coefficient of air thermal plasmas, J. Phys. D: Appl. Phys., 35, 2925–2934.
Newsome, R. T., and U. S. Inan (2010), Free-running ground-based photometric array imaging of transient luminous events, J. Geophys. Res., 115, A00E41, doi:10.1029/2009JA014834.
Nickolaenko, A. P., and M. Hayakawa (2002), Resonances in the Earth-Ionosphere cavity, 380 pp., Kluwer Academic Publishers, Netherlands.
Ontar Corporation (2002), PcModWin manual version 4.0, North Andover, Mass.
Orville, R. E. (1968a), A high-speed time-resolved spectroscopic study of the lightning return stroke. Part I: A qualitative analysis. J. Atmos. Sci., 25, 827–838.
Orville, R. E. (1968b), Spectrum of the lightning stepped leader, J. Geophys. Res., 73, 6999–7008.
Orville, R. E., and M. A. Uman (1965), The optical continuum of lightning, J. Geophys. Res., 70, 279–282.
Orville, R. E., and R. W. Henderson (1984), Absolute spectral irradiance measurements of lightning from 375 to 880 nm, J. Atmos. Sci., 41, 3180–3180, doi:10.1175/1520-0469(1984)041<3180:ASIMOL>2.0.CO;2.
Orville, R. E., and V. P. Idone (1982), Lightning leader characteristics in the Thunderstorm Research International Program (TRIP), J. Geophys. Res., 87, 11,177–11,192.
Pancheshnyi, S. V., S. M. Starikovskaia, A. Yu. Starikovskii (1998), Measurements of rate constants of the N2(C3Πu, v’ = 0) and N2+ (B2Σu+ , v’ = 0) deactivation by N2, O2, H2, CO and H2O molecules in afterglow of the nanosecond discharge, Chem. Phys. Let., 294, 523–527.
Paris, P., M. Aints, M. Laan, and F. Valk (2004), Measurement of intensity ratio of nitrogen bands as a function of field strength, J. Phys. D: Appl. Phys., 37, 1179–1184, DOI: 10.1088/0022-3727/37/8/005.
Pasko, V. P. (2003), Electrical jets, Nature, 423, 927–929.
Pasko, V. P. (2006), Theoretical modeling of sprites and jets of Sprites, Elves and Intense Lightning Discharges, edited by M. Füllekrug, E. A. Mareev, and M. J. Rycroft, pp. 253–311, Springer, Dordrecht, Netherlands, doi:10.1007/1-4020-4629-4_12.
Pasko, V. P. (2007), Red sprite discharges in the atmosphere at high altitude: The molecular physics and the similarity with laboratory discharges, Plasma Sources Sci. Technol., 16, 13–29, doi:10.1088/0963-0252/16/1/S02.
Pasko, V. P. (2008), Blue jets and gigantic jets: Transient luminous events between thunderstorm tops and the lower ionosphere, Plasma Phys. Control. Fusion, 50, 124050.
Pasko, V. P. (2010), Recent advances in theory of transient luminous events, J. Geophys. Res., 115, A00E35, doi:10.1029/2009JA014860.
Pasko, V. P., and J. J. George (2002), Three‐dimensional modeling of blue jets and blue starters, J. Geophys. Res., 107(A12), 1458, doi:10.1029/2002JA009473.
Pasko, V. P., M. A. Stanley, J. D. Mathews, U. S. Inan, and T. G. Wood (2002), Electrical discharge from a thundercloud top to the lower ionosphere, Nature, 416, 152–154, doi:10.1038/416152a.
Pasko, V. P., U. S. Inan, and T. F. Bell (1996), Blue jets produced by quasielectrostatic pre‐discharge thundercloud fields, Geophys. Res. Lett., 23, 301–304.
Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko (1997), Sprites produced by quasi‐electrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., 102, 4529–4561, doi:10.1029/96JA03528.
Petersen, D., M. Bailey, J. Hallett, and W. Beasley (2014), Laboratory investigation of corona initiation by ice crystals and its importance to lightning, Q. J. R. Meteorol. Soc., doi:10.1002/qj.2436.
Petersen, D., M. Bailey, W. H. Beasley, and J. Hallett (2008), A brief review of the problem of lightning initiation and a hypothesis of initial lightning leader formation, J. Geophys. Res., 113, D17205, doi:10.1029/2007JD009036.
Petrov, N. I., and G. N. Petrova (1999), Physical mechanisms for the development of lightning discharges between a thundercloud and the ionosphere, Tech. Phys., 44, 472–475, doi:10.1134/1.1259327.
Phelps, C. T. (1974), Positive streamer system intensification and its possible role in lightning initiation, J. Atmos. Sol. Terr. Phys., 36, 103– 111.
Piper, L. G. (1992), Energy transfer studies on N2(X1Σg+,v) and N2(B3Πg), J. Chem. Phys., 97, 270–275.
Piper, L. G., B. D. Green, W. A. M. Blumberg, and S. J. Wolnik (1985), N2+ Meinel band quenching, J. Chem. Phys., 82, 3139–3145.
Ploum A. (2012), Iconography, science and lightning figures , Australian Aboriginal Studies, 2012(2), 87–95.
Price, C., M. Asfur, and Y. Yair (2009), Maximum hurricane intensity preceded by increase in lightning frequency, Nature Geoscience, 2, 329 – 332, DOI: 10.1038/NGEO477.
Raizer, Y. P. (1997), Gas Discharge Physics, 2nd ed., 449 pp., Springer, Berlin.
Raizer, Y. P., G. M. Milikh, and M. N. Shneider (2006), On the mechanism of blue jet formation and propagation, Geophys. Res. Lett., 33, L23801, doi:10.1029/2006GL027697.
Raizer, Y. P., G. M. Milikh, and M. N. Shneider (2007), Leader streamers nature of blue jets, J. Atmos. Sol. Terr. Phys., 69, 925–938, doi:10.1016/j.jastp.2007.02.007.
Raizer, Y. P., G. M. Milikh, and M. N. Shneider (2010), Streamer- and leader-like processes in the upper atmosphere: Models of red sprites and blue jets, J. Geophys. Res., 115, A00E42, doi:10.1029/2009JA014645.
Raizer, Y. P., G. M. Milikh, M. N. Shneider, and S. V. Novakovski (1998), Long streamers in the upper atmosphere above thundercloud, J. Phys. D. Appl. Phys., 31, 3255–3264.
Rakov, V. A., and M. A. Uman (2003), Lightning: Physics and Effects, 850 pp., Cambridge Univ. Press, Cambridge, U. K.
Reising, S., U. Inan, T. Bell, and W. Lyons (1996), Evidence for continuing current in sprite-producing cloud-to-ground lightning, Geophys. Res. Lett., 23, 3639– 3642.
Riousset, J. A., V. P. Pasko, and A. Bourdon (2010b), Air-density dependent model for analysis of air heating associated with streamers, leaders, and transient luminous events, J. Geophys. Res., 115, A12321, doi:10.1029/2010JA015918.
Riousset, J. A., V. P. Pasko, P. R. Krehbiel, W. Rison, and M. A. Stanley (2010a), Modeling of thundercloud screening charges: Implications for blue and gigantic jets, J. Geophys. Res., 115, A00E10, doi:10.1029/2009JA014286.
Rison, W., R. Thomas, P. Krehbiel, T. Hamlin, and J. Harlin (1999), A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico, Geophys. Res. Lett., 26(23), 3573–3576, doi:10.1029/1999GL010856.
Rodger, C. J. (1999), Red sprites, upward lightning, and VLF perturbations, Rev. Geophys., 37(3), 317–336, doi:10.1029/1999RG900006.
Rodger, C. J., S. Werner, J. B. Brundell, E. H. Lay, N. R. Thomson, R. H. Holzworth, and R. L. Dowden (2006), Detection efficiency of the VLF World‐Wide Lightning Location Network (WWLLN): Initial case study, Ann. Geophys., 24, 3197–3214, doi:10.5194/angeo-24-3197-2006.
Roussel‐Dupré, R. A., and A. V. Gurevich (1996), On runaway breakdown and upward propagating discharges, J. Geophys. Res., 101, 2297–2312, doi:10.1029/95JA03278.
Rowland, H. L., R. F. Fernsler, J. D. Huba, and P. A. Bernhardt (1995), Lightning driven EMP in the upper atmosphere, Geophys. Res. Lett., 22(4), 361–364.
Sato, M., and H. Fukunishi (2003), Global sprite occurrence locations and rates derived from triangulation of transient Schumann resonance events, Geophys. Res. Lett., 30(16), 1859, doi:10.1029/2003GL017291.
Sentman, D. D. (1996), Schumann resonance spectra in a two-scale-height Earth-ionosphere cavity, J. Geophys. Res., 101(D5), 9479–9487, doi:10.1029/95JD03301.
Sentman, D. D., and E. M. Wescott (1993), Observations of upper atmospheric optical flashes recorded from an aircraft, Geophys. Res. Lett., 20, 2857–2860.
Sentman, D. D., E. M. Wescott, D. L. Osborne, D. L. Hampton, and M. J. Heavner (1995), Preliminary results from the Sprite94 aircraft campaign: 1. Red sprites, Geophys. Res. Lett., 22, 1205–1208, doi:10.1029/95GL00583.
Shao, X. M., and A. R. Jacobson (2009), Model simulation of very low frequency and low frequency lightning signal propagation over intermediate ranges, IEEE Trans. Electromagn. Compat., 51, 519–525, doi:10.1109/TEMC.2009.2022171.
Shaw, G. E. (1998), Above cloud electrical discharges: The effect of aerosol transport, Geophys. Res. Lett., 25, 4317–4320.
Simpson, Sir G. and F. J Scrase (1937), The distribution of electricity in thunderstorm, Proc. Roy. Soc. Lond., A, 161, 309–352.
Simpson, Sir G. and G. D. Robinson (1941), The distribution of electricity in thunderstorm II, Proc. Roy. Soc. Lond., A, 177, 281–328.
Smith, D. A. (1998), Compact intracloud discharges, Ph.D. thesis, Univ. of Colo., Boulder.
Smith, D. A., M. J. Heavner, A. R. Jacobson, X. M. Shao, R. S. Massey, R. J. Sheldon, and K. C. Wiens (2004), A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records, Radio Sci., 39, RS1010, doi:10.1029/2002RS002790.
Smith, D., X. M. Shao, D. N. Holden, C. T. Rhodes, M. Brook, P. R. Krehbiel, M. Stanley, W. Rison, and R. Thomas (1999), A distinct class of isolated intracloud lightning discharges and their associated radio emissions, J. Geophys. Res., 104(D4), 4189–4212, doi:10.1029/1998JD200045.
Soula, S., O. van der Velde, J. Montanya, P. Huet, C. Barthe, and J. Bór (2011), Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island, J. Geophys. Res., 116, D19103, doi:10.1029/2010JD015581.
Stenbaek-Nielsen, H. C., M. G. McHarg, T. Kammae, and D. D. Sentman (2007), Observed emission rates in sprite streamer heads, Geophys. Res. Lett., 34, L11105, doi:10.1029/2007GL029881.
Stolzenburg, M., T. C. Marshall, W. D. Rust, and B. F. Smull (1994), Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system, Mon. Weather Rev., 122, 1777–1797, doi:10.1175/1520-0493(1994)122<1777:HDOEAM>2.0.CO;2.
Su, H. T., R. R. Hsu, A. B. Chen, L.C. Lee, S. B. Mende, H. U. Frey, H. Fukunishi, Y. Takahashi, and C. L. Kuo ( 2005 ), Key results from the first fourteen months of ISUAL experiment, American Geophysical Union, Fall Meeting 2005, San Francisco, USA, Abstract # AE11A-01.
Su, H. T., R. R. Hsu, A. B. Chen, Y. C. Wang, W. S. Hsiao, W. C. Lai, L. C. Lee, M. Sato, and H. Fukunishi (2003), Gigantic jets between a thundercloud and the ionosphere, Nature, 423, 974–976, doi:10.1038/nature01759.
Sukhorukov, A. I., E. V. Mishin, P. Stubbe, and M. J. Rycroft (1996), On blue jet dynamics, Geophys. Res. Lett., 23, 1625–1628.
Suszcynsky, D. M., R. Roussel‐Dupré, W. A. Lyons, and R. A. Armstrong (1998), Blue‐light imagery and photometry of sprites, J. Atmos. Sol. Terr. Phys., 60(7–9), 801–809, doi:10.1016/S1364-6826(98)00027-3.
Suzuki, T., M. Hayakawa, Y. Hobara, and K. Kusunoki (2012), First detection of summer blue jets and starters over Northern Kanto area of Japan: Lightning activity, J. Geophys. Res., 117, A07307, doi:10.1029/2011JA017366.
Takahashi, Y. (2003), ISUAL Array Photometer Science Performance Test Report, Department of Geophysics, Tohoku University, Sendaishi, Japan.
Takahashi, Y., et al. (2010), Absolute optical energy of sprites and its relationship to charge moment of parent lightning discharge based on measurement by ISUAL/AP, J. Geophys. Res., 115, A00E55, doi:10.1029/2009JA014814.
Taranenko, Y. N., U. S. Inan, and T. F. Bell (1993a), The interaction with the lower ionosphere of electromagnetic pulses from lightning: Heating, attachment, and ionization, Geophys. Res. Lett., 20(15), 1539–1542.
Taranenko, Y. N., U. S. Inan, and T. F. Bell (1993b), The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions, Geophys. Res. Lett., 20(23), 2675–2678.
Tong, L. Z., K. Nanbu, and H. Fukunishi (2004), Numerical analysis of initiation of gigantic jets connecting thunderclouds to the ionosphere, Earth Planets Space, 56(11), 1059–1065.
Tong, L. Z., K. Nanbu, and H. Fukunishi (2005), Simulation of gigantic jets propagating from the top of thunderclouds to the ionosphere, Earth Planets Space, 57(7), 613–617.
Toynbee, H., and T. Mackenzie (1886), Meteorological phenomena, Nature, 33, 245.
Tsai, L. Y., et al. (2009), Blue jets over tropical cyclones, AGU Chapman Conference on the Effects of Thunderstorms and Lightning in the Upper Atmosphere 10–14 May 2009, Penn State University, State College, PA, USA, Abstract# OTL-12.
U.S. Government (1976), U.S. Standard Atmosphere, 1976, 227 pp., U.S. Government Printing Office, Washington, D.C..
Uman, M. A. (1963), The continuum spectrum of lightning, J. Atmospheric Terrest. Phys., 25, 287–295.
Uman, M. A., and R. E. Orville (1965), The opacity of lightning, J. Geophys. Res., 70, 5491–5497.
Uman, M. A., R. E. Orville, and L. E. Salanave (1964), The density, pressure, and particle distribution in a lightning stroke near peak temperature, J. Atmos. Sci., 21, 306–310.
Valk, F., M. Aints, P. Paris, T. Plank, J. Maksimov, and A. Tamm (2010), Measurement of collisional quenching rate of nitrogen states N2(C3Πu, v = 0) and N2+ (B2Σu+ , v = 0), J. Phys. D: Appl. Phys., 43, 385202, doi:10.1088/0022-3727/43/38/385202.
Vallance‐Jones, A. (1974), Aurora, D. Reidel, Norwell, Mass.
van der Velde, O. A., J. Bór, J. Li, S. A. Cummer, E. Arnone, F. Zanotti, M. Füllekrug, C. Haldoupis, S. NaitAmor, and T. Farges (2010), Multiinstrumental observations of a positive gigantic jet produced by a winter thunderstorm in Europe, J. Geophys. Res., 115, D24301, doi:10.1029/2010JD014442.
van der Velde, O. A., W. A. Lyons, T. E. Nelson, S. A. Cummer, J. Li, and J. Bunnell (2007), Analysis of the first gigantic jet recorded over continental North America, J. Geophys. Res., 112, D20104, doi:10.1029/2007JD008575.
Van Zyl, B., and W. Pendleton Jr. (1995), N2+ (X), N2+ (A), and N2+ (B) production in e- + N2 collisions, J. Geophys. Res., 100(A12), 23,755–23,762.
Vonnegut, B. (1980), Cloud to stratosphere lightning, Weather, 35, 59–60.
Wait, J. R. (1962), Electromagnetic Waves in Stratified Media, 372 pp., Pergamon Press Inc., New York.
Wait, J. R. (1970), Electromagnetic Waves in Stratified Media Revised Edition Including Supplemented Material, 608 pp., Pergamon Press Ltd., Oxford.
Wang, Y.-C., K. Wang, H.-T. Su, and R.-R. Hsu (2005), Low-latitude ELF-whistlers observed in Taiwan, Geophys. Res. Lett., 32, L08102, doi:10.1029/2005GL022412.
Watson, S. S., and T. C. Marshall (2007), Current propagation model for a narrow bipolar pulse, Geophys. Res. Lett., 34, L04816, doi:10.1029/2006GL027426.
Wescott, E. M., D. D. Sentman, H. C. Stenbaek‐Nielsen, P. Huet, M. J. Heavner, and D. R. Moudry (2001b), New evidence for the brightness and ionization of blue starters and blue jets, J. Geophys. Res., 106(A10), 21,549–21,554, doi:10.1029/2000JA000429.
Wescott, E. M., D. D. Sentman, M. J. Heavner, D. L. Hampton, and O. H. Vaughan (1998b), Blue jets: Their relationship to lightning and very large hailfall, and their physical mechanisms for their production, J. Atmos. Sol. Terr. Phys., 60, 713–724, doi:10.1016/S1364-6826(98)00018-2.
Wescott, E. M., D. D. Sentman, M. J. Heavner, D. L. Hampton, D. L. Osborne, and O. H. Vaughan (1996), Blue starters: Brief upward discharges from an intense Arkansas thunderstorm, Geophys. Res. Lett., 23, 2153–2156, doi:10.1029/96GL01969.
Wescott, E. M., D. D. Sentman, M. J. Heavner, D. L. Hampton, W. A. Lyons, and T. Nelson (1998a), Observations of ‘Columniform’ sprites, J. Atmos. Sol. Terr. Phys., 60, 733.
Wescott, E. M., D. Sentman, D. Osborne, D. Hampton, and M. Heavner (1995), Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets, Geophys. Res. Lett., 22, 1209–1212, doi:10.1029/95GL00582.
Wescott, E. M., H. C. Stenbaek-Nielsen, D. D. Sentman, M. J. Heavner, D. R. Moudry, and F. T. S. Sabbas (2001a), Triangulation of sprites, associated halos and their possible relation to causative lightning and micrometeors, J. Geophys. Res., 106(A6), 10,467–10,477, doi:10.1029/2000ja000182.
Willett, J. C., J. C. Bailey, and E. P. Krider (1989), A class of unusual lightning electric field waveforms with very strong high-frequency radiation, J. Geophys. Res., 94, 16,255– 16,267.
Williams, E. R. (1998), The positive charge reservoir for sprite-producing lightning, J. Atmos. Sol. Terr. Phys., 60, 689–692, doi:10.1016/S1364-6826(98)00030-3.
Williams, E. R. (2008), Atmospheric science: Predictable lightning paths?, Nature Geoscience, 1, 216–217 , doi:10.1038/ngeo168.
Williams, E., E. Downes, R. Boldi, W. Lyons, and S. Heckman (2007), Polarity asymmetry of sprite-producing lightning: A paradox?, Radio Sci., 42, RS2S17, doi:10.1029/2006RS003488.
Williams, E., et al. (2012), Resolution of the sprite polarity paradox: The role of halos, Radio Sci., 47, RS2002, doi:10.1029/2011RS004794.
Wilson, C. T. R. (1925), The electric field of a thundercloud and some of its effects, Proc. Phys. Soc. London, 37, 32D–37D.
Wilson, C. T. R., (1920), Investigations on lightning discharges and on the electric field of thunderstorms, Phil. Trans. Roy. Soc. Lond., A, 221, 73–115.
Winckler, J. R. (1995), Further observations of cloud-ionosphere electrical discharges above thunderstorms, J. Geophys. Res., 100, 14,335–14,345.
Winckler, J. R., W. A. Lyons, T. E. Nelson, and R. J. Nemzek (1996), New high-resolution ground-based studies of sprites, J. Geophys. Res., 101, 6997–7004.
Wolf, T. G. (1990), Remote Sensing of Ionospheric Effects Associated with Lightning Using Very Low Frequency Radio Signals, PhD. Thesis, Stanford University, USA.
Wu, T., S. Yoshida, T. Ushio, Z. Kawasaki, and D. Wang (2014), Lightning-initiator type of narrow bipolar events and their subsequent pulse trains, J. Geophys. Res. Atmos., 119, 7425–7438, doi:10.1002/2014JD021842.
Wu, T., W. Dong, Y. Zhang, and T. Wang (2011), Comparison of positive and negative compact intracloud discharges, J. Geophys. Res., 116, D03111, doi:10.1029/2010JD015233.
Wu, T., W. Dong, Y. Zhang, T. Funaki, S. Yoshida, T. Morimoto, T. Ushio, and Z. Kawasaki (2012), Discharge height of lightning narrow bipolar events, J. Geophys. Res., 117, D05119, doi:10.1029/2011JD017054.
Wu, Y. J., et al. (2012), Occurrence of elves and lightning during El Niño and La Niña, Geophys. Res. Lett., 39, L03106, doi:10.1029/2011GL049831.
Yair, Y., et al. (2005), Space shuttle observation of an unusual transient atmospheric emission, Geophys. Res. Lett., 32, L02801, doi:10.1029/2004GL021551.
Yair, Y., P. Israelevich, A. D. Devir, M. Moalem, C. Price, J. H. Joseph, Z. Levin, B. Ziv, A. Sternlieb, and A. Teller (2004), New observations of sprites from the space shuttle, J. Geophys. Res., 109, D15201, doi:10.1029/2003JD004497
Yair, Y., L. Rubanenko, K. Mezuman, G. Elhalel, M. Pariente, M. Glickman-Pariente, B. Ziv, Y. Takahashi, and T. Inoue (2013), New color images of transient luminous events from dedicated observations on the International Space Station, J. Atmos. Sol. Terr. Phys., 102, 140–147
Yang J., and Feng G. L. (2012), A gigantic jet event observed over a thunderstorm in mainland China. Chin Sci Bull, 57: 4791-4800, doi: 10.1007/s11434-012-5486-3.
Yukhimuk, V., R. Roussel‐Dupré, and E. Symbalisty (1998), Optical characteristics of blue jets produced by runaway air breakdown, simulation results, Geophys. Res. Lett., 25, 3289–3292.
Zhu, B., H. Zhou, M. Ma, and S. Tao (2010b), Observations of narrow bipolar events in East China, J. Atmos. Sol. Terr. Phys., 72, 271–278, doi:10.1016/j.jastp.2009.12.002.
Zhu, B., H. Zhou, M. Ma, F. Lv, and S. Tao (2010a), Estimation of channel characteristics of narrow bipolar events based on the transmission-line model, J. Geophys. Res., 115, D19105, doi:10.1029/2009JD012021.