簡易檢索 / 詳目顯示

研究生: 謝文哲
Hsieh, Wen-Che
論文名稱: 氯離子對光催化過硫酸鹽氧化水中污染物之影響研究
Effect of chloride ions on the degradation kinetics of organic contaminants in water under UV-assisted persulfate oxidation
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 91
中文關鍵詞: 過硫酸鹽氯離子甲基第三丁基醚過硫酸根自由基二氯自由基預測模式
外文關鍵詞: Persulfate, Methyl-tert-butyl ether(MTBE), sulfate radical, dichlorine radical, model prediction
相關次數: 點閱:145下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過硫酸鹽(Persulfate)高級氧化為近年來現地化學氧化法(ISCO)常用的方法,經由催化反應後會產生自由基破壞污染物結構,對許多有機物均有良好的去除能力。在實際應用中,地下水環境中的氯鹽會影響過硫酸鹽的氧化效果,其具體影響為何目前仍有很大的爭議。為了探討氯離子對過硫酸鹽氧化的影響,本研究利用自由基平衡模式及酸性環境下過硫酸鹽氧化p-CBA的反應計算硫酸根自由基(SO4-.)生成速率,建立受氯鹽干擾下過硫酸鹽氧化動力模式及氯鹽影響判斷模式,針對該模式以五種探針化合物(甲醇、乙醇、酚、乙醯苯胺、酸橙7)進行驗證,並分析對實際目標污染物甲基第三丁基醚(MTBE)的處理效果。
    研究中列出氯鹽在過硫酸鹽氧化系統中主要的自由基反應式,並以各反應式速率常數值建立系統中自由基生成預測模式,並根據探針物質的氧化反應動力求得各種物質的k_(p〖SO〗_4^(-.) )及k_(p〖Cl〗_2^(-.) ),由此k值可建立氧化反應預測模式,並從反應動力的比值可建立氯鹽影響比值(φ),透過該比值比較可推斷氯鹽對過硫酸鹽氧化系統的影響為促進或抑制。
    由自由基生成預測結果可得知不同氯離子濃度在系統中自由基生成量,不存在氯鹽的氧化系統的SO4-.濃度為1.61×10-11M,氯鹽存在時Cl2-.的濃度為2.8~3.2×10-10M,顯示系統中Cl2-.為主要自由基物種;由實驗結果可得到,甲醇、乙醇的去除效率受到氯離子的影響而抑制,於反應30分鐘內最多減少40%左右的去除效率,其他物質較無法看出受氯鹽的影響程度,於30分鐘內皆可達到95%以上的去除率,與動力預測模式比較,可發現整體的相對誤差皆小於30%,證明該預測模式應用於受氯鹽影響的系統時有良好的準確性。由影響模式中甲醇、乙醇、乙醯苯胺φ值均小於1,代表氯鹽作用於系統中將造成抑制作用,可呼應氧化實驗結果隨著氯離子的劑量增加則降解受到抑制20~40%不等;酸橙7φ值大於1,對應實驗結果在反應10分鐘內透過氯離子作用將增加20%的去除效率。MTBE的氧化系統中,由影響模式φ值大於1可判斷MTBE為受到添加氯離子而加強去除效率的物質,但φ值相當接近1較難判斷看出結果差異性,比較氧化實驗與動力預測其誤差為14%,顯示模式可以合理預測MTBE的氧化反應。一般而言,該預測模式應用於多種污染物受氯離子作用所造成之影響預測具有高度的準確性,可發展應用於其他實際污染物的影響預測。

    Persulfate is an emerging oxidant used in in-situ chemical oxidation(ISCO) for soil and groundwater remediation. The chemical can be activated with different methods to generate sulfate radical(SO4-.) and hydroxyl radical(OH.), leading to the oxidation of many organic contaminants present in groundwater. Although persulfate has become one of the important ISCO oxidant, the effect of chloride, a common co-existing anion in many groundwater systems in Taiwan, on the production of the radicals remained unclear. In this study, effect of chloride on the production of radicals in a UV assisted persulfate system is studied. A probe compound, p-CBA, was first employed to measure the formation rate constant of SO4-.. Based on the rate constants, a kinetic model considering the impact of chloride was built. The model was verified with five probe compounds including phenol, methanol, ethanol, acetanilide and acid orange 7, and then employed to the prediction of the degradation rate of MTBE.
    Based on the chain reaction of radicals in persulfate/chloride system, a model was established to estimate the formation of two major radicals under steady state. Then rate models for the oxidation of probe compounds and targeted organic compounds may be estimated from appropriate reaction rate constants. To quantify the impact of chloride on the reaction rate, chloride impact factor(φ) representing the rate with chloride relative to that without chloride in the system, was calculated.
    Based on the experimental results obtained, the concentration of sulfate radical in the UV/persulfate system was 1.61×10-11M in chloride free system. With the presence of chloride of 1-100mM, dichlorine radical is the dominant radical, with 2.8-3.2×10-10M in the system. Chloride may slow the degradation rates of methanol and ethanol by 40%, while for other probe compounds, no effect on the rates were observed. The rate models were able to describe the experimental data, with mostly less than 30% of relative errors, indicating that the models are reasonable. When applying the models for MTBE, the models predicted degradation of MTBE very well, with only 14% of error. It may be concluded the radical-based rate model described all the experimental data reasonably well and may be used in the systems with other contaminants.

    摘要…………I Abstract……III 目錄 ………………VII 表目錄X 圖目錄XI 第一章 緒論 1 1-1 研究緣起 1 1-2 研究內容 2 第二章 文獻回顧 3 2-1 地下水污染物 3 2-1-1 地下水有機污染 3 2-1-1-1 地下水有機污染的來源途徑 3 2-1-1-2 地下水常見之有機污染物種類 4 2-1-2 地下水氯鹽污染 6 2-1-2-1 地下水受氯鹽污染來源 6 2-1-2-2 國內地下水受氯鹽污染現狀 8 2-2現地化學氧化技術 10 2-2-1 現地化學氧化法簡介 10 2-2-2氧化劑種類 11 2-3過硫酸鹽高級氧化處理技術 14 2-3-1 過硫酸鹽的氧化特性 14 2-3-2 過硫酸鹽應用於ISCO影響因素 17 2-3-3 應用高級氧化過硫酸鹽於地下水整治 20 2-4 氯鹽對現地高級氧化法的影響 24 2-4-1 對Fenton試劑的影響 24 2-4-2 對過硫酸鹽的影響 25 2-5 自由基的生成與鑑定技術 27 2-5-1電子自旋共振(Electron Spin Resonance, ESR) 27 2-5-2 化學發光技術(Chemiluminescence) 28 2-5-3 化學探針(Probe-compound) 29 2-6 自由基轉換率Rct 30 2-6-1 化學探針應用於自由基量測 30 2-6-2 Rct概念的運用 32 第三章 實驗設備與方法 35 3-1 研究架構 35 3-2 氧化實驗 37 3-3 化學探針分析 39 3-4 過硫酸根分析 42 3-4-1實驗試劑與設備 42 3-4-2分析方法 42 3-5 目標污染物分析 43 3-5-1實驗試劑與設備 43 3-5-2目標污染物分析方法 43 第四章 結果與討論 45 4-1 模式推導 45 4-1-1自由基反應式 45 4-1-2自由基濃度的計算 49 4-1-3 氯離子對反應速率影響判斷模式 55 4-2 預測模式之驗證 59 4-2-1 過硫酸鹽對探針化合物的氧化效果 59 4-2-2 氧化動力驗證 66 4-2-3 氯離子對探針物質氧化速率之影響 75 4-3 污染物的實際模式應用 77 4-3-1 MTBE的降解反應動力與模式預測 77 4-3-2 氯離子對MTBE氧化影響 80 第五章 結論與建議 81 5-1 結論 81 5-2 建議 82 參考文獻 83

    Acero, J.L., Haderlein, S.B., Schmidt, T.C., Suter, M.J. and von Gunten, U. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation. Environ Sci Technol 35(21). 4252-4259. (2001a)
    Anders Lund, M.S., Shigetaka Shimada. Principles and Applications of ESR Spectroscopy. Amazon Digital Services, Inc. 53. (2011)
    Canonica, S., Meunier, L. and von Gunten, U. Phototransformation of selected pharmaceuticals during UV treatment of drinking water. Water Research 42(1–2). 121-128. (2008)
    Chan, K.H. and Chu, W. Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process. Water Research 43(9). 2513-2521. (2009)
    Cheng Gang, H.P., DU Su-jun. The Discussion on the Conditions and Main Problem of the Deicer. Shanxi science & Technology of communications 5. 45-46. (2004)
    Criquet, J. and Leitner, N.K.V. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere 77(2). 194-200. (2009)
    Dasari, M.S., Richards, K.M., Alt, M.L., Crawford, C.F.P., Schleiden, A., Ingram, J., Hamiclou, A.A.A., Williams, A., Chernovitz, P.A., Luo, R.S., Sun, G.Y., Luchtefeld, R. and Smith, R.E. Synthesis of diapocynin. Journal of Chemical Education 85(3). 411-412. (2008)
    de la Calle, R.G., Gimeno, O. and Rivas, J. Percarbonate as a Hydrogen Peroxide Carrier in Soil Remediation Processes. Environmental Engineering Science 29(10). 951-956. (2012)
    de Laat, J. and Le, T.G. Effects of chloride ions on the iron(III)-catalyzed decomposition of hydrogen peroxide and on the efficiency of the Fenton-like oxidation process. Applied Catalysis B-Environmental 66(1-2). 137-146. (2006)
    Deng, Y., Rosario-Muniz, E. and Ma, X. Effects of inorganic anions on Fenton oxidation of organic species in landfill leachate. Waste Manag Res 30(1). 12-19. (2012)
    Dogliotti, L. and Hayon, E. Flash photolysis of per[oxydi]sulfate ions in aqueous solutions. The sulfate and ozonide radical anions. The Journal of Physical Chemistry 71(8). 2511-2516. (1967)
    Elovitz, M., von Gunten, U. Hydroxyl radical/ozone ratios during ozonation processes. I.The Rct Concept. . Ozone Sci.Eng. 21. 239-260. (1999)
    Elovitz, M.S. and von Gunten, U. Hydroxyl radical ozone ratios during ozonation processes. I-The R-ct concept. Ozone-Science & Engineering 21(3). 239-260. (1999)
    Fang, G.D., Dionysiou, D.D., Wang, Y., Al-Abed, S.R. and Zhou, D.M. Sulfate radical-based degradation of polychlorinated biphenyls: effects of chloride ion and reaction kinetics. J Hazard Mater 227-228. 394-401. (2012)
    Fang, G.D., Dionysiou, D.D., Zhou, D.M., Wang, Y., Zhu, X.D., Fan, J.X., Cang, L. and Wang, Y.J. Transformation of polychlorinated biphenyls by persulfate at ambient temperature. Chemosphere 90(5). 1573-1580. (2013)
    FMC. Persulfates Technical Information. (2001)
    Glaze, J.-W.K., and Chapin. The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone Science & Engineering 9(335-352). (1987)
    Gisbert Westphal, Gerhard Kristen, Wilhelm Wegener, Peter Ambatiello, Helmut Geyer, Bernard Epron, Christian Bonal, Georg Steinhauser and Götzfried, F. Sodium Chloride. Ullmann's Encyclopedia of Industrial Chemistry. (2010)
    Haselow, J.S., Siegrist, R.L., Crimi, M. and Jarosch, T. Estimating the total oxidant demand forin situ chemical oxidation design. Remediation Journal 13(4). 5-16. (2003)
    Hayon, E. and McGarvey, J.J. Flash photolysis in the vacuum ultraviolet region of sulfate, carbonate, and hydroxyl ions in aqueous solutions. The Journal of Physical Chemistry 71(5). 1472-1477. (1967)
    House, D.A. Kinetics and Mechanism of Oxidations by Peroxydisulfate. Chemical Reviews 62(3). 185-203. (1962)
    Howard, K.W.F. and Haynes, J. Urban Geology .3. Groundwater Contamination due to Road Deicing Chemicals - Salt Balance Implications. Geoscience Canada 20(1). 1-8. (1993)
    Huang, K.-C., Couttenye, R.A. and Hoag, G.E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49(4). 413-420. (2002a)
    Huang, K.-C., Zhao, Z., Hoag, G.E., Dahmani, A. and Block, P.A. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61(4). 551-560. (2005a)
    Huang, K.C., Couttenye, R.A. and Hoag, G.E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49(4). 413-420. (2002b)
    Huang, K.C., Zhao, Z., Hoag, G.E., Dahmani, A. and Block, P.A. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61(4). 551-560. (2005b)
    Huang, Y.-F. and Huang, Y.-H. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process. Journal of Hazardous Materials 162(2-3). 1211-1216. (2009)
    Huber, M.M., Canonica, S., Park, G.-Y. and von Gunten, U. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environmental Science & Technology 37(5). 1016-1024. (2003a)
    Huber, M.M., Canonica, S., Park, G.Y. and von Gunten, U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37(5). 1016-1024. (2003b)
    Huie, C.L.C.a.P.N. Eletron Transfer Reaction Rates and Equilibria of The Carbonate And Sulfate Radical Anions. Radiat. Phys. Chem. 38(5). 477-481. (1991)
    Janzen, E.G., Stronks, H.J., Dubose, C.M., Poyer, J.L. and McCay, P.B. Chemistry and Biology of Spin-Trapping Radicals Associated With Halocarbon Metabolism Invitro and Invivo. Environmental Health Perspectives 64. 151-170. (1985)
    Jayson, G.G., Parsons, B.J. and Swallow, A.J. Some Simple, Highly Reactive, Inorganic Chlorine Derivatives in Aqueous-Solution - Their Formation Using Pulses Of Radiation and Their Role in Mechanism of Fricke Dosimeter. Journal of the Chemical Society-Faraday Transactions I (9). 1597-1607. (1973)
    Khan, N., Wilmot, C.M., Rosen, G.M., Demidenko, E., Sun, J., Joseph, J., O'Hara, J., Kalyanaraman, B. and Swartz, H.M. Spin traps: In vitro toxicity and stability of radical adducts. Free Radical Biology and Medicine 34(11). 1473-1481. (2003)
    Kim, J.-H., Elovitz, M.S., von Gunten, U., Shukairy, H.M. and Mariñas, B.J. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water. Water Research 41(2). 467-475. (2007)
    Kiwi, A.L., and V. Nadtochenko. Mechanism and Kinetics of the OH-Radical Intervention during Fenton Oxidation in the Presence of a Significant Amount of Radical Scavenger (Cl-). Environ.Sci.Technol. 34. 2162-2168. (2000)
    Kladna, A., Berczynski, P., Kruk, I., Michalska, T. and Aboul-Enein, H.Y. Scavenging of hydroxyl radical by catecholamines. Luminescence 27(6). 473-477. (2012)
    Kolthoff, I.M. and Miller, I.K. The Chemistry of Persulfate. I. The Kinetics and Mechanism of the Decomposition of the Persulfate Ion in Aqueous Medium1. Journal of the American Chemical Society 73(7). 3055-3059. (1951)
    Konikow, L.F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophysical Research Letters 38(17). (2011)
    Latifoglu, A. and Gurol, M.D. The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes. Water Research 37(8). 1879-1889. (2003)
    Le Truong, G., De Laat, J. and Legube, B. Effects of chloride and sulfate on the rate of oxidation of ferrous ion by H2O2. Water Research 38(9). 2384-2394. (2004)
    Liang, C., Bruell, C.J., Marley, M.C. and Sperry, K.L. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere 55(9). 1225-1233. (2004)
    Liang, C., Chien, Y.-C. and Lin, Y.-L. Impacts of ISCO Persulfate, Peroxide and Permanganate Oxidants on Soils: Soil Oxidant Demand and Soil Properties. Soil and Sediment Contamination: An International Journal 21(6). 701-719. (2012)
    Liang, C., Huang, C.-F., Mohanty, N. and Kurakalva, R.M. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73(9). 1540-1543. (2008)
    Liang, C. and Su, H.-W. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Industrial & Engineering Chemistry Research 48(11). 5558-5562. (2009a)
    Liang, C., Wang, Z.-S. and Mohanty, N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Science of The Total Environment 370(2-3). 271-277. (2006)
    Liang, C.J., Bruell, C.J., Marley, M.C. and Sperry, K.L. Thermally Activated Persulfate Oxidation of Trichloroethylene (TCE) and 1,1,1-Trichloroethane (TCA) in Aqueous Systems and Soil Slurries. Soil and Sediment Contamination: An International Journal 12(2). 207-228. (2003)
    Liang, C.J. and Su, H.W. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Industrial & Engineering Chemistry Research 48(11). 5558-5562. (2009b)
    Lin, Y.-T., Liang, C. and Chen, J.-H. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82(8). 1168-1172. (2011)
    Méndez-Díaz, J., Sánchez-Polo, M., Rivera-Utrilla, J., Canonica, S. and von Gunten, U. Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals. Chemical Engineering Journal 163(3). 300-306. (2010)
    Mascolo, G., Ciannarella, R., Balest, L. and Lopez, A. Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation. J Hazard Mater 152(3). 1138-1145. (2008)
    Min, S. The Chloride Pollution in the Groundwater. SCi/Tech Information Development & Economy 15(24). 246. (2005)
    Molson, J.W., Frind, E.O., Van Stempvoort, D.R. and Lesage, S. Humic acid enhanced remediation of an emplaced diesel source in groundwater. 2. Numerical model development and application. Journal of Contaminant Hydrology 54(3-4). 277-305. (2002)
    Moyer, E.E. and Kostecki, P.T. MTBE Remediation Handbook. 225. (2004)
    Mumford, K.G., Lamarche, C.S. and Thomson, N.R. Natural oxidant demand of aquifer materials using the push-pull technique. Journal of Environmental Engineering-Asce 130(10). 1139-1146. (2004)
    Neta, Madhavan, V., Zemel, H. and Fessenden, R.W. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. Journal of the American Chemical Society 99(1). 163-164. (1977)
    Neyens, E. and Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials 98(1-3). 33-50. (2003)
    Neta,l.V.M., Ib Haya Zemel, and Richard W. Fessenden. Rate Constants and Mechanism of Reaction of S04.- with Aromatic Compounds. Journal of the American Chemical Society 99(1). 163-164. (1977)
    Neta, R.R.H.a.A.B.R. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. Phys. Chem. Ref. Data 17(3). 1027-1282. (1988)
    Oh, S.Y., Kim, H.W., Park, J.M., Park, H.S. and Yoon, C. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J Hazard Mater 168(1). 346-351. (2009)
    Peternel, I., Kusic, H., Marin, V. and Koprivanac, N. UV-assisted persulfate oxidation: the influence of cation type in the persulfate salt on the degradation kinetics of an azo dye pollutant. Reaction Kinetics, Mechanisms and Catalysis 108(1). 17-39. (2012)
    Pivetz, S.G.H.a.B.E. In-Situ Chemical Oxidation. USEPA. (2006)
    Qin, X.S., Huang, G.H. and Yu, H. Enhancing Remediation of LNAPL Recovery through a Response-Surface-Based Optimization Approach. Journal of Environmental Engineering-Asce 135(10). 999-1008. (2009)
    Rosenfeldt, E.J., Linden, K.G., Canonica, S. and von Gunten, U. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Res 40(20). 3695-3704. (2006)
    Sánchez-Polo, M., von Gunten, U. and Rivera-Utrilla, J. Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters. Water Research 39(14). 3189-3198. (2005)
    Sahoo, M.K., Sinha, B., Marbaniang, M., Naik, D.B. and Sharan, R.N. Mineralization of Calcon by UV/oxidant systems and assessment of biotoxicity of the treated solutions by E. coli colony forming unit assay. Chemical Engineering Journal 181–182(0). 206-214. (2012)
    Sauro, V.A., Magri, D.C., Pitters, J.L. and Workentin, M.S. The electrochemical reduction of 1,4-dichloroazoethanes: Reductive elimination of chloride to form aryl azines. Electrochimica Acta 55(20). 5584-5591. (2010)
    Siedlecka, E.M., Wieckowska, A. and Stepnowski, P. Influence of inorganic ions on MTBE degradation by Fenton's reagent. J Hazard Mater 147(1-2). 497-502. (2007)
    Sperry, K.L., Marley, M.C., Bruell, C.J., Liang, C.J., and Hochreiter, J.P.G. Iron catalyzed persulfate oxidation of chlorinated solvents. In: Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds. (2002)
    Sra, K.S. Persulfate Persistence and Treatability of Gasoline Compounds. thesis presented to the University of Waterloo in fulfilment of the. (2010)
    Survey, U.S.G. Saltwater Intrusion in Los Angeles Area Coastal Aquifers—the Marine Connection. (2005)
    Sutherland, J., Adams, C. and Kekobad, J. Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation: technical and economic comparison for five groundwaters. Water Research 38(1). 193-205. (2004)
    Taylor, M.L.C.a.J. Experimental Evaluation of Catalyzed Hydrogen Peroxide and Sodium Persulfate for Destruction of BTEX Contaminants. Soil and Sediment Contamination 16(1). 29-45. (2007)
    Thomson, N.R., Hood, E.D. and Farquhar, G.J. Permanganate treatment of an emplaced DNAPL source. Ground Water Monitoring and Remediation 27(4). 74-85. (2007)
    Tsitonaki, A., Petri, B., Crimi, M., MosbÆK, H., Siegrist, R.L. and Bjerg, P.L. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Critical Reviews in Environmental Science and Technology 40(1). 55-91. (2010)
    Wang, P., Yang, S., Shan, L., Niu, R. and Shao, X. Involvements of chloride ion in decolorization of Acid Orange 7 by activated peroxydisulfate or peroxymonosulfate oxidation. Journal of Environmental Sciences 23(11). 1799-1807. (2011)
    Watts, M.A.a.A.L.T. Chemistry of Modified Fenton’s Reagent „Catalyzed H2O2 Propagations–CHP… for In Situ Soil and Groundwater Remediation. Environ. Eng. 131. 612-622. (2005)
    Watts, R.J. and Teel, A.L. Treatment of Contaminated Soils and Groundwater Using ISCO. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 10(1). 2-9. (2006)
    Yang, F., Zhang, R.-p., He, J.-m. and Zeper, A. The generation, trapping and detection methods of hydroxyl radical. Yaoxue Xuebao 42(7). 692-697. (2007)
    Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X. and Niu, R. Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials 179(1-3). 552-558. (2010)
    Yuan, R., Ramjaun, S.N., Wang, Z. and Liu, J. Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: implications for formation of chlorinated aromatic compounds. J Hazard Mater 196. 173-179. (2011)
    Zhang, H., Joseph, J., Vasquez-Vivar, J., Karoui, H., Nsanzumuhire, C., Martasek, P., Tordo, P. and Kalyanaraman, B. Detection of superoxide anion using an isotopically labeled nitrone spin trap: potential biological applications. Febs Letters 473(1). 58-62. (2000)
    Zhao, Y.P., Yu, W.L., Wang, D.P., Liang, X.F. and Hu, T.X. Chemiluminescence determination of free radical scavenging abilities of 'tea pigments' and comparison with 'tea polyphenols'. Food Chemistry 80(1). 115-118. (2003)
    Zheng Guo-Call, XIAO Shang-you, MU Xiao-jing and Zhi-ning, X. Advance in Determination of Free Radicals. Guangzhou Chemistry 31(3). (2006)
    Zong, Y.P., Liu, X.H., Du, X.W., Lu, Y.R. and Shi, X.X. Photocatalytic Degradation of 2,4,5–TCP in TiO<sub>2</sub>/UV/H<sub>2</sub>O<sub>2</sub> System. Advanced Materials Research 518-523. 2649-2652. (2012)
    王正雄. 台灣地區土壤及地下水污染來源與途徑. TASGEP 2. 14-15. (2001)
    李文凱. 光催化過硫酸鹽氧化水中六種有機污染物之動力研究與模擬. 國立成功大學環境工程研究所碩士論文. (2012)
    洪采貝. 光活化過硫酸鹽與臭氧氧襪水中甲基第三丁基醚之動力研究. 國立成功大學環境工程研究所碩士論文. (2011)
    梁振儒. 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法. 台灣土壤及地下水環境保護協會簡訊. 13-20. (2007)
    梁振儒. 現地化學氧化法過氧化氫、過硫酸鈉及高錳酸鉀氧化劑對土壤衝擊影響之探討. 環境工程會刊. (2011)
    陳文福. 臺灣的地下水. (2005)
    黃昆德. 利用高錳酸鉀氧化法處理三氯乙烯污染之地下水. 國立中山大學環境工程研究所碩士論文. (2004)
    葉桂君, 楊., 邱景暉, 邱春惠. 針鐵礦催化之 Fenton-like 反應去除 95 汽油 LNAPL 之評估 中華民國環境工程學會 2006土壤與地下水研討會. (2006)
    鄧昌蔚. 化學發光. 台灣師範大學科學教育月刊 264. 32-37. (2002)

    下載圖示 校內:2014-08-29公開
    校外:2014-08-29公開
    QR CODE