簡易檢索 / 詳目顯示

研究生: 羅允劭
Lo, Yun-Shao
論文名稱: 拉凡格式法應用於差分全球定位系統之研究
The Study of Levenberg-Marquardt Algorithm for Differential Global Positioning System
指導教授: 蕭飛賓
Hsiao, Fei-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 48
中文關鍵詞: 差分定位拉凡格式
外文關鍵詞: DGPS, Levenberg-Marquardt
相關次數: 點閱:54下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   隨著科技的日趨進步,將近半個世紀的努力,全球定位系統(Global Positioning System, GPS)的技術日漸成熟,人們及各類交通工具的蹤跡,將可輕易經由此系統而得到。本論文指在採用由GPS衛星所發送出之C/A碼,利用一般常用的最小平方法(Least-squares method)及目前廣泛應用於類神經網路訓練之拉凡格式演算法(Levenberg-Marquardt algorithm)於求解GPS虛擬距離及差分定位(Differential GPS, DGPS)位置解中精度之研究。而經過一連串靜態及動態實驗及分析,在本研究中驗證拉凡格式法其快速收斂及甚少的疊代次數之優點,而拉凡格式法所解之位置精度可到達約10公尺,其精度亦相當於修改過後的最小平方法之解,在經過DGPS修正誤差後,其位置精度更可達到約2~3公尺。此結果更進一步說明該新方法具有與最小平方法並駕齊驅之潛力。

      In recent year, owing to the maturity of Satellite technology and Global Positioning System (GPS), the precise positioning potential of GPS has been the primary sensor for navigation and control of a vehicle. This thesis emphasizes that the concept of processing the raw data emitting from GPS satellite by Least-squares method, and new method, Levenberg-Marquardt algorithm widely used in neural network training, in GPS and DGPS. In this study, the advantage of applying Levernberg-Marquardt algorithm is that it converges in much less iteration times without divergence in both static and dynamic condition. As the result of experiments, solving GPS position by Levernberg-Marquardt algorithm can achieve the accuracy around 10 meters. After post processing DGPS, the position accuracy even can achieve 2~3-meter level and this result explain that the new algorithm is the other choice comparing to the Least-squares method.

    Contents 中文摘要………………………………………………………………I ABSTRACT………………………………………………………………II ACKNOWLEDGEMENTS……………………………………………………III CONTENTS………………………………………………………………IV LIST OF TABLES………………………………………………………VI LIST OF FIGURES……………………………………………………VII CHAPTER 1 INTRODUCTION………………………………………………1 1.1 Introduction of GPS………………………………………1 1.2 Motivations and Objectives……………………………8 1.3 Literature Survey…………………………………………9 CHAPTER 2 DESCRIPTION OF MATHEMATICAL MODELS…………………11 2.1 Mathematical models for Global Positioning system……………………11 2.1.1 Pseudo-range solution…………………………………11 2.1.2 Differential GPS algorithm……………………………12 2.1.3 Navigation message and the position of satellites ……………14 2.2 Least squares method……………………………………20 2.3 Levenberg-Marquardt method……………………………26 CHAPTER 3 EXPERIMENTAL FACILITIES AND METHODOLOGY…………29 3.1 Hardware Description……………………………………29 3.2 Static test………………………………………………32 3.3 Dynamic test………………………………………………32 CHAPTER 4 EXPERIMENTATION RESULTS AND DISCUSSION……………34 4.1 Experimentation results………………………………34 4.1.1 Static test………………………………………………34 4.1.2 Dynamic test………………………………………………39 4.2 Comparison…………………………………………………43 CHAPTER 5 CONCLUSIONS AND RECOMMENDATION……………………44 5.1 Conclusions………………………………………………44 5.2 Future works………………………………………………44 References………………………………………………………………46 VITA………………………………………………………………………48

    References
    [1] Gilbert Strang and Kai Borre, “Linear algebra, geodesy, and GPS”, Wellesley-Cambridge Press, Wellesley, MA, 1997.
    [2] Huang, S. H., “The Study of Real-Time DGPS Navigation Accuracy during Approach and Landing of an Ultralight Vehicle”, Institute of Aeronautics and Astronautics, National Cheng Kung University, Master Thesis, 2002
    [3] Technical University of Catalonia, http://maite152.upc.es
    [4] University of California, http://math.ucr.edu
    [5] Natural Resources Canada, http://www.geod.nrcan.gc.ca
    [6] Marquardt, D.W., “An algorithm for least-squares estimation of nonlinear parameters.” Journal of the Society for Industrial and Applied Mathematics, pp.431–441, 1963.
    [7] Hagan, M. T. and Menhaj, M., “Training feedforward networks with the Marquardt algorithm”, IEEE Transactions on Neural Networks, vol. 5, no. 6, pp.989- 993, 1994.
    [8] Wilamowski, Iplikci, Kayank, and Onder, “An Algorithm for Fast Convergence in Training Neural Networks”, International Joint Conference on Neural Networks (IJCNN'01), pp.1778-1782, Washington DC, 2001.
    [9] Wilamowski, Chen, and Malinowski, “Efficient algorithm for training neural networks with one hidden layer”, International Joint Conference on Neural Networks (IJCNN'99), pp.1725-1728, Washington, DC, 1999.
    [10] 陳威昇,”類神經網路訓練程序之些許建議”,碩士論文,國立成功大學航太工程研究所,2003。
    [11] Sung, D. U., Oh, J. H., Kim, C. G., and Hong, C. S., “Impact monitoring of smart composite laminates using neural network and wavelet analysis”, Journal of Intelligent Material Systems and Structures. Vol. 11, no. 3, pp.180-190, 2000.
    [12] Doicu, A. Schreier, F. and Hess, M. “Iterative regularization methods for atmospheric remote sensing”, Journal of Quantitative Spectroscopy & Radiative Transfer (0022-4073), vol.83, no.1, p.47-61, 2004.
    [13] Goettsche, F. M. and Olesen, F. S., “Modelling of diurnal cycles of brightness temperature extracted from METEOSAT data”, Remote Sensing of Environment. Vol. 76, no.3, pp.337-348., 2001.
    [14] Shih, S. E., Ding, K. H., Nghiem, S. V., Hsu, C. C., Kong, A. A., and Jordan, A. K., “Thin saline ice thickness retrieval using time-series C-band polarimetric radar measurements”, IEEE Transactions on Geoscience and Remote Sensing. Vol.36, pt.1, no.5, pp.1589-1598., 1998.
    [15] Bradford W. Parkinson, James J. Spilker Jr., “Global Positioning System: Theory and Applications”, American Institute of Aeronautics and Astronautics, Washington, DC, 1995.
    [16] W. de Gruyter, “Satellite geodesy: foundations, methods, and applications”, W. de Gruyter, Berlin, 1993.
    [17] Dept. of Earth & Atmospheric Sciences Purdue University, http://www.eas.purdue.edu/~calais/
    [18] Guan, W.L., “The development and application of DGPS technique in estimating longitudinal aerodynamic parameters for RPV and Ultralight Airplane”, Institute of Aeronautics and Astronautics, National Cheng Kung University, Ph.D. Dissertation, 1998.
    [19] Christian Altmayer, “Accuracy Improvements of Pseudolite Systems -First Results”, ION NTM, Long Beach, 2001.
    [20] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, “Numerical Recipes in C: The Art of Scientific Computing Second Edition”, Cambridge University Press, 1992.
    [21] Borse, G.. J., “Numerical methods with MATLAB: a resource for scientists and engineers”, Boston, PWS Publishing, 1997.
    [22] Ashtech of Thales groups, “G12TM GPS Board & Sensor Reference Manual”, http://www.ashtech.com/en/

    下載圖示 校內:立即公開
    校外:2004-08-23公開
    QR CODE