簡易檢索 / 詳目顯示

研究生: 陳德欽
Tan, Teik-Khim
論文名稱: 輔助二氧化碳雷射技術於高分子材料之加工與應用
Fabrication and application of polymer materials using assisted technology for CO2 laser ablation
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 116
中文關鍵詞: 二氧化碳雷射微流體晶片微針狀陣列水溶液輔助
外文關鍵詞: CO2 laser, microfluidic device, microneedles array, water solution
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用二氧化碳(CO2)雷射在大氣中對PMMA(Polymethylmethacrylate)與PDMS(Polydimethylsiloxane)高分子材料作加工,並針對加工中所產生的缺陷提出改善的方法。而在雷射加工中最常見的缺陷主要包括了以下幾種:凸塊、燒焦、皺褶、熱影響區以及再凝固物。經由這些缺陷我們可以明顯的發現到,多數的缺陷形成都與熱累積有密切的關係。因此針對不同的缺陷,我們提供了個別不同的輔助媒介來進行改善。最後再將所提出的改善方法應用於微針狀陣列與微流體晶片的製作與應用上。
    針對PMMA材料加工所產生的缺陷,我們使用了膠帶覆蓋與水溶液輔助的方式來進行改善。由實驗結果證明,此方法可以有效的降低加工過程中的溫度梯度,並從中改善凸塊、熱影響區以及再凝固物的缺陷。經由量測後發現,凸塊的高度明顯的得到了改善,由原本的12 μm降低至0.4 μm左右。最後並成功的將此技術應用在微針狀陣列的製作與應用上。另外,針對CO2雷射在空氣中對PDMS加工所產生的缺陷,我們則使用了氧電漿與水溶液輔助的方式來進行改善。從實驗結果發現,此方法不但可以有效的提高加工材料的品質且在形成微流體晶片後也沒觀察到任何的液體阻塞或洩漏的現象發生。

    Normally, a laser is applied to fabricate microchannels or microholes directly on PMMA and PDMS substrate in air. This direct CO2 laser ablation can generate poor surfaces quality such as bulges, scorches, shrinkage, large heat-affected zone and resolidification around the rim of channels and holes. Most of them are generally induced by heat accumulation during laser ablation. In this research, a different types of medium-assisted laser micromachining technique was developed to carry out the improvement of microchannels/holes surfaces quality fabricated on PMMA and PDMS substrate. An example of high-aspect ratio microneedles array and microfluidic device is presented to demonstrate the capability of the technique.
    A hybrid CO2 laser micromachining method is presented that using a commercial tape and water solution for high-aspect ratio machining of PMMA substrate. This method can reduce the temperature gradient, bulges, heat-affected zone region and resolidification for achieving good quality of high-aspect ratio machined channels/holes. The bulges height of a few μm was significantly reduced and the minimum recorded height in those substrate were 0.4 μm. Furthermore, we also report an approach to fabricate a microchannel without scorches and shrinkage on the PDMS substrate by adding O2 plasma and water solution on top of the substrate. After the flow testing process, the dye solution was confined well in the channel and no leakage was observed.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 1-3 本文架構 5 第二章 文獻回顧 7 2-1 傳統微機電製程技術 7 2-2 雷射加工製程技術 10 2-3 實驗室晶片文獻回顧 19 2-3-1 微針狀陣列 19 2-3-2 微流體晶片 23 2-4 電漿改質原理 27 第三章 實驗方法與步驟 30 3-1 雷射的介紹與基本原理 30 3-1-1 原理與機制 30 3-1-2 二氧化碳雷射的介紹與加工參數的影響 34 3-2 實驗材料 39 3-2-1 聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA) 39 3-2-2 聚二甲基矽氧烷(Polydimethylsiloxane,PDMS) 40 3-2-3 兩性界面活性劑(Amphoteric surfactant) 41 3-3 實驗儀器設備介紹 44 3-3-1 二氧化碳雷射雕刻機(CO2 laser) 44 3-3-2 氧電漿(O2 plasma) 45 3-3-3 真空泵浦以及程式控制高溫爐(Vacuum and furnace) 46 3-3-4 光學顯微鏡(Optical Microscope) 46 3-3-5 表面粗度量測儀(Alpha-step profiler) 47 3-3-6 桌上型掃描式電子顯微鏡(Desktop Scanning Electron Microscope,SEM) 48 第四章 膠帶覆蓋水輔助雷射加工PMMA材料 50 4-1 加工實驗步驟與流程 50 4-1-1 傳統無覆蓋層雷射加工 50 4-1-2 膠帶與水輔助雷射加工 53 4-2 比較不同狀況下之雷射加工 56 4-2-1 傳統無覆蓋層雷射加工 56 4-2-2 膠帶覆蓋與水輔助雷射加工 63 4-2-2-1 不同膠帶對加工結果的影響 63 4-2-2-2 水輔助對加工結果的影響 69 4-2-2-3 界面活性劑對加工結果的影響 74 4-3 高深寬比之微針狀陣列結構製作 79 第五章 氧電漿水輔助雷射加工PDMS材料 82 5-1 加工實驗步驟與流程 83 5-1-1 傳統大氣中雷射加工 83 5-1-2 氧電漿與水輔助雷射加工 86 5-2 比較不同狀況下之雷射加工 88 5-2-1 傳統大氣中雷射加工 89 5-2-2 氧電漿水輔助雷射加工 93 5-2-2-1 水輔助對加工結果的影響 93 5-2-2-2 界面活性劑對加工結果的影響 95 5-2-2-3 氧電漿表面改質對加工結果的影響 96 5-3 微流體晶片製作 99 第六章 結論與未來展望 102 6-1 結論 102 6-2 未來方向 105 6-3 本文貢獻 107 參考文獻 109 作者簡歷 116

    1. C. Liu, “Recent developments in polymer MEMS”, Advanced Materials 19, 3783-3790, 2007.
    2. R. Delille, M. G. Urdaneta, S. J. Moseley and E. Smela, “ Benchtop polymer MEMS”, Journal of Microelectromechanical Systems, 15, 1108-1120, 2006.
    3. K. W. Kelly, C. Harris, L. S. Stephens, C. Marques and D. Foley, “Industrial applications for LIGA-fabricated micro heat exchangers”, Proceedings of SPIE 4559, 2001.
    4. P. Meyer, J. D. Claverley and R. K. Leach, “ Quality control for deep x-ray lithography (LIGA) : a preliminary metrology study”, Microsystem Technologies, 18, 415-421, 2012.
    5. A. Bertsch, H. Lorenz and P. Renuad, “3D microfabrication by combining microstereolithography and thick resist UV lithography”, Sensors and Actuators 73, 14-23, 1999.
    6. H. K. Chang and Y. K. Kim, “UV-LIGA process for high-aspect ratio structure using stress barrier and C-shaped etch hole”, Sensors and Actuators 84, 342-350, 2000.
    7. X. F. Wang, J. Zou, S. W. Chung, C. A. Mirkin and C. Liu, “Design, fabrication, and characterization of thermally actuated probe arrays for dip pen nanolithography”, Journal of Microelectromechanical Systems 13, 594-602, 2004
    8. S. Mukhopadhyay, S. S. Roy, A. Mathur, M. Tweedie and J. A. McLaughlin, “Experimental study on capillary flow through polymer microchannel bends for microfluidic applications”, Journal of Micromechanics and Microengineering 20, 055018(6pp), 2010.
    9. B. Y. Pemg, C. W. Wu, Y. K. Shen and Y. Lin, “Microfluidic chip fabrication using hot embossing and thermal bonding of COP”, Polymer of Advanced Technologies 21, 457-466, 2010
    10. R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu and H. H. Hooper, “Microchannel electrophoresis separations of DNA in injection-molded plastic substrates”, Analytical Chemistry 69, 2626-2630, 1997.
    11. K. Nodo, Y. W. Leong and H. Hamada, “ Effect of knitted and woven textile structures on the mechanical performance of poly(lactic acid) textile insert injection-compression moldings”, Journal of Applied Polymer Science, 125, E201-E207, 2012.
    12. C. K. Chung and T. R. Shih, “A rhombic micromixer with asymmetrical flow for enhancing mixing”, Journal of Micromechanics and Microengineering 17, 2495-2504, 2007.
    13. B. Mosadegh, M. Agarwal, Y. Torisawa and S. Takayama, “Simultaneous fabrication of PDMS through-holes for three-dimensional microfluidic application”, Lab on Chip 10, 1983-1986, 2010.
    14. C. K. Malek and V. Saile, “Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and –systems: a review”, Microelectronics Journal 35, 131-143, 2004.
    15. H. Y. Zheng, Y. C. Lam, C. Sundarraman and D. V. Tran, “Influence of substrate cooling on femtosecond laser machined hole depth and diameter”, Applied Physics A 89, 559-563, 2007.
    16. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses”, Optics Express 13, 5939-5946, 2005.
    17. X. Zhao and Y. C. Shin, “Femtosecond laser drilling of high-aspect ratio microchannels in glass.”, Applied Physics A Materials Science & Processing, 104, 713-719, 2011.
    18. Y. Feng, Z. Q. Liu and X. S. Yi, “Co-occurrence of photochemical and thermal effects during laser polymer ablation via a 248-nm excimer laser”, Applied Surface Science 156, 303-308, 2000.
    19. J. Jiang, C. L. Callender, J. P. Noad, R. B. Walker and S. J. Mihailov, “All-polymer photonic devices using excimer laser micromachining”, IEEE Photonics Technology Letters 16, 2004.
    20. S. W. Youn, M. Takahashi, H. Goto and R. Maeda, “Fabrication of micro-mold for glass embossing using focused ion beam, femtosecond laser, excimer laser and dicing techniques”, Journal of Materials Processing Technology, 187, 326-330, 2007.
    21. H. Klank, J. P. Kutter and O. Geschke, “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems”, Lab on Chip 2, 242-246, 2002.
    22. D. Snakenborg, H. Klank and J. P. Kutter, “Microstructure fabrication with CO2 laser system”, Journal of Micromechanics and Microengineering 14, 182-189, 2004.
    23. J. Y. Cheng, C. W. Wei, K. H. Hsua and T. H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development”, Sensors and Actuators B 99, 186-196, 2004.
    24. C. K. Chung, Y. C. Lin and G. R. Huang, “Bulge formation and improvement of the polymer in CO2 laser micromachining”, Journal of Micromechanics and Microengineering 15, 1878-1884, 2005.
    25. J. M. Li, C. Liu and L. Y. Zhu, “The formation and elimination of polymer bulges in CO2 laser microfabrication”, Journal of Materials Processing Technology 209, 4818-4821, 2009.
    26. K. L. N. Deepak, R. Kuladeep, S. Venugopal Rao and D. Narayana Rao, “Studies on defect formation in femtosecond laser-irradiated PMMA and PDMS”, Radiation Effects and Defects in Solids, 167, 88-101, 2011.
    27. Z. K. Wang, H. Y. Zheng, R. Y. H. Lim, Z. F. Wang and Y. C. Lam, “Improving surface smoothness of laser-fabricated microchannels for microfluidic application”, Journal of Micromechanics and Microengineering, 21, 095008, 2011.
    28. L. W. Luo, C. Y. Teo, W. L. Ong, K. C. Tang, L. F. Cheow and L. Yobas, “Rapid prototyping of microfluidic systems using a laser-patterned tape”, Journal of Micromechanics and Microengineering 17, N107-N111, 2007.
    29. H. S. Chuang and S. T. Wereley, “Rapid patterning of slurry-like elastomer composites using a laser cut tape”, Journal of Micromechanics and Microengineering, 19, 097001, 2009.
    30. H. B. Liu and H. Q. Gong, “Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser”, Journal of Micromechanics and Microengineering, 19, 037002, 2009.
    31. J. Wu, D. Day and M. Gu, “Polymeric optpfluidic Fabry-Perot sensor by direct laser machining and hot embossing”, Applied Optics, 50, 1843-1849, 2011.
    32. K. Kim, D. S. Parl, H. M. Lu, W. Che, J. B. Lee and C. H. Ahn, “A tapered hollow metallic microneedle array using backside exposure of SU-8”, Journal of Micromechanics and Microengineering 14, 597-603, 2004.
    33. J. H. Park, M. G. Allen and M. R. Prausnitz, “Biodegradable polymer microneedles : fabrication, mechanics and transdermal drug delivery”, Journal of Controlled Release 104, 51-66, 2005.
    34. R. Turner, Y. Desta, K. Kelly, J. Zhang, E. Geiger and D. C. Mancini, “Tapered LIGA HARMs”, Journal of Micromechanics and Microengineering 13, 367-372, 2003.
    35. H. Huang and C. Fu, “Different fabrication methods of out-of-plane polymer hollow needle arrays and their variations”, Journal of Micromechanics and Microengineering 17, 393-402, 2007.
    36. B. J. Kim, H. J. Kim, S. M. Jung, J. K. Sung and H. H. Lee, “Fabrication of microneedle using laser written PDMS mold for molecule transport into plant skin”, Biochip Journal, 3, 281-286, 2009.
    37. R. F. Donnelly, R. Majithiya, T. R. Singh, D. I. Morrow, M. J. Garland, Y. K. Demir, K. Migalska, E. Ryan, D. Gillen, C. J. Scott and A. D. Woolfson, “Design, optimization and characterization of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique”, Pharmaceutical Research, 28, 41-57, 2011.
    38. V. Dolnik, S. Liu and S. Jovanovich, “Capillary electrophoresis on microchip”, Electrophoresis 21, 41-54, 2000.
    39. Z. Zhang, P. Zhao, G. Xiao B. R. Watts and C. Xu, “Sealing SU-8 microfluidic channels using PDMS”, Biomicrofluidics, 5, 046503, 2011.
    40. B. Cortese, M. C. Mowlem and H. Morgan, “Characterisation of an irreversible bonding process for COC-COC and COC-PDMS-COC sandwich structures and application to microvalves”, Sensors and Actuators B Chemical, 160, 1472-1480, 2011.
    41. S. Massey, A. Duboin, D. Mantovani, P. Tabeling and M. Tatoulian, “Stable modification of PDMS surface properties by plasma polymerization : Innovative process of allylamine PECVD deposition and microfluidic devices sealing”, Surface and Coatings Technology, 206, 4304-4309, 2012.
    42. J. Zhou, A. V. Ellies and N. H. Voelcker, “Recent developments in PDMS surface modification for microfluidic devices”, Electrophoresis, 31, 2-16, 2010.
    43. J. R. Hollahan and G. L. Carlson, “ Hydroxylation of polymethylsiloxane surfaces by oxidizing plasmas”, Journal of Applied Polymer Science 14, 2499-2508, 1970.
    44. B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood and D. J, Beebe, “Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer”, Journal of Microelectromechanical Systems 9, 76-81, 2000.
    45. M. Yao and J. Fang, “Hydrophilic PEO-PDMS for microfluidic applications”, Journal of Micromechanics and Microengineering, 22, 025012, 2011.
    46. M. Li, S. Li, J. Wu, W. Wen. W, Li and G. Alici, “A simple and cost-effective method for fabrication of integrated alectronic-microfluidic devices using a laser-patterned PDMS layer”, Microfluid Nanofluid, 12, 751-760, 2012.
    47. 丁勝懋,“雷射工程導論”,中央圖書出版社出版,民國八十四年。
    48. F. Weisbuch, V. N. Tokarev, S. Lazare and D. Debarre, “Viscosity of transient melt layer on polymer surface under conditions of KrF laser ablation”, Applied Surface Science 186, 95-99, 2002.
    49. B. C. Sim and W. S. Kim, “Melting and dynamic-surface deformation in laser surface heating”, International Journal of Heat and Mass Transfer 58, 1137-1144, 2005.
    50. J. Zhao, J. Sullivan and T. D. Bennett, “Wet etching study of silica glass after CW CO2 laser treatment”, Applied Surface Science 225, 250-255, 2004.
    51. A. Kruusing, “Underwater and water-assisted laser processing : Part 1 – general features, steam cleaning and shock processing”, Optics and Lasers in Engineering 41, 307-327, 2004.
    52. A. Kruusing, “Underwater and water-assisted laser processing : Part 2 – etching, cutting and rarely used methods”, Optics and Lasers in Engineering 41, 329-352, 2004.
    53. N. C. Nayak, Y. C. Lam, C. Y. Yue and A. T. Sinha, “CO2-laser micromachining of PMMA : the effect of polymer molecular weight”, Journal of Micromechanics and Microengineering 18, 095020, 2008.
    54. J. Xie, C Zhou, W Wang and T Wu, “Femtosecond laser induced microripple on PDMS surface”, Chinese Optics Letters 7, 715-717, 2009.

    無法下載圖示 校內:2022-07-11公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE