| 研究生: |
李宜玟 Lee, Yi-Wen |
|---|---|
| 論文名稱: |
抗反射層之設計應用於砷化鎵太陽能電池之探討 The study of various antireflectance coating layer on GaAs solar cell |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 太陽能 、砷化鎵 、抗反射層 |
| 外文關鍵詞: | solar cell, GaAs, antireflection coating |
| 相關次數: | 點閱:81 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於能源的短缺,石油的耗竭。如何研發新一代的替代能源十足的重要,太陽能的出現展現了新的契機,太陽每天放出光和熱,如何有效的利用其能量轉換成人類常用的能源很值得人們去開發與研究。
現今太陽能電池尤以三五族化合物半導體的太陽能電池效率最高。三五族太陽能電池主要是因為有較高的轉換效率以及其能隙調變,將其互相串接結合的無限發展性,以及優越的抗輻射能力,使得三五族太陽能電池不論是應用在的表的日常生活抑或是在外太空的酬載都有很大的發展性。有鑑於此我們利用有機金屬化學氣相沉積法成長較簡易之三五族單接面砷化鎵太陽能結構,以此為太陽能電池之基本結構基底,在太陽能電池表面製備一層抗反射層以增加入射光吸收率,進而使得電子電洞對增加以增加光電流,而使太陽能電池效率提升。
在本論文中探討薄膜型抗反射層以及微結構與奈米結構之抗反射層應用在太陽能電池上之效應,以增加其光電流於砷化鎵太陽能電池上面以提升效率。首先使用MATLAB 軟體理論計算出最適當的薄膜厚度與折射率條件再使用溶膠凝膠法製備薄膜型抗反射層實際應用在太陽能電池上使用ZnO 以及 MgF2兩種材質能將反射率降低10%而效率提升30%。接著探討微結構上使用壓印技術製備各種不同模具圖形壓印出各種不同圖形的結構型抗反射層於砷化鎵太陽能電池上面探討其效應。結果發現三角柱狀的微米壓印在EPOXY於砷化鎵太陽能電池上面能降低反射率至11% 並且提升效率約為28%。
最後使用水溶液法成長奈米等級之氧化鋅奈米線之抗反射層於太陽能電池結構上面並探討其效應。其中抗反射能力能將反射率降低至10 %同時提升效率至42%。比較三種不同之抗反射層於砷化鎵太陽能電池效率提升之多寡,使其將來可應用在多種太陽能電池上面。
使用表面抗反射層能輕易的增加太陽能電池之效率,使太陽能電池在生活上的實用價值顯著提升,有助於拓展太陽能電池的應用領域與普及率。
Because of the energy shortage and the oil crisis are getting more and more serious. How to find renewable energy to replace the oil is an important issue for our live! The solar power is a turning point of the new sources of energy. Sun generate light and heat every day. It is worth to research how to convert the solar energy to electricity to satisfy our demand..
The highest conversion efficiency in different kind of solar cells can be found in the III-V compound solar cell. The advantages of the III-V solar cell are high absorption coefficient, high conversion efficiency, high radiation resistance, broad spectral response and concentrator system integratable. This tandem structure can be used in III-V compound solar cells to utilize the entire solar spectrum, and the radiation resistance makes it suitable for space application. We use Metal-organic Chemical Vapor Deposition (MOCVD) method to grow the simplest structure single junction GaAs solar cell and add antireflection coating layers on the devices to enhance the light transmission. The enhancement of light transmission helps to generate more electron-hole pairs. Therefore both of the current density and the efficiency of solar cells can be increased.
The effect of thin film and textured antireflection coating on GaAs solar cells to enhance the conversion efficiency will be investigated in this thesis. We use MATLAB software simulation to find out the best combination of refractive index and thickness of the thin film antireflection coating layer and utilize the sol-gel method to prepare the thin film with ZnO and MgF2 on the GaAs solar cells, which can help to reduce the reflectivity to 10%. And the conversion efficiency can be improved for about 30%. Next we discuss various textured surface with micro-scale pattern by using imprint method to form the antireflection coating layer on the cells and investigate their effect. The triangular shape micro-prism formed by EPOXY is the best result and can reduce the reflectivity to 11%. And enhance the conversion efficiency for about 28%. Finally we try to adopt the ZnO nanowire grown on the solar cell by using chemical bath deposition method to evaluate the influence of the solar cell. The best result of this method can reduce the reflectivity to 10%. And the conversion efficiency can be enhanced to about 42%. Then we compare all three types of antireflection coating on the GaAs solar cells to find the best result tof conversion efficiency enhancement.
The antireflection coating layer can easily improve the conversion efficiency of solar cells and make them more popular in our daily life. As a result this technology will make the dream of green world more promising.
Chapter 1
[1.1] L. Bornstein “Advanced Materials and Technologies -Numerical Data and Functional Relationships in Science and Technology” Springer-Verlag Berlin, Germany, Chapter 4, 2006
[1.2]M. Yamaguchi, C. Amano, H. Sugiura, A. Yamamoto, “High efficiency AlGaAs-GaAs tandem solar cells with tunnel junction,” Proc. IEEE 19th Photovoltaic Specialists Conf., pp. 1484-1485, 1987
[1.3] A. W. Bett, F. Dimroth, G. Stollwerck, O. V. Sulima, “III-V compounds for solar cell applications”, Applied Physics A: Materials Science & Processing, Vol. 69, pp. 119-129, 1999
[1.4] M. F. Piszczor, S. White, M. Douglas, B. Spence, P.A. Jones, “Development of an ultraflex-based thin film solar array for space applications,” Proc. 3rd World Conf. Photovoltaic solar Energy Conversion, pp. 793-796, 2003
[1.5] A. Shah, P.Torres, R.Tscharner, N.Wyrsch and H.Keppner, “Solar Cells photovoltaic technology-the case for thin-film” Science, Vol. 285, No. 5428, pp. 692-698, 1999
[1.6] Hideki Matsubara, Tatsuya Tanabe, Akihiko Saegusa, Shigenori Takagishi and Tsuguru Shirakawa Basic “GaAs solar cell with GalnP window grown by all metalorganic source MOVPE” IEEE, First WCPEC , pp.1871, 1994
[1.7] A. S. Hovhannisyan “Single-Layer Antireflection Coatings for GaAs Solar Cells” Journal of Contemporary Physics Vol. 43, No. 3, pp. 136–138 (2008)
[1.8] Jenny Nelson “The physic of solar cells” Imperial college, UK, Chapter 2, 2003
[1.9] http://www.nrel.gov/
Chapter 2
[2.1] Peter Würfel,and Uli Würfel,“Physics of Solar Cells: From Basic Principles to Advanced Concepts” Wiley-VCH Verlag GmbH, pp.2-5 2009
[2.2] Jenny Nelson “The physic of solar cells” Imperial college, UK, pp.20, 2003
[2.3] Jenny Nelson “The physic of solar cells” Imperial college, UK, pp7-15, 2003
[2.4] Amnon Yariv,Pochi Yeh,Photonics“Optical electronics in modern communications” Oxford University Press, USA, pp.280, 2007
[2.5] Amnon Yariv,Pochi Yeh,Photonics“Optical electronics in modern communications ” Oxford University Press, USA, pp285, 2007
[2.6] Kh. S. Martirosyan, A. S. Hovhannisyan, and V. M. Aroutiounian “Calculation of reflectance of porous silicon double-layer antireflection coating for silicon solar cells” Phys. Stat. Sol (c) Vol.4, No. 6, pp.2103– 2106,2007
[2.7] Daniel N. Wright, Erik S. Marstein and Arve Holt “Double layer anti-reflective coatings for silicon solar cells” IEEE, Photovoltaic Specialists Conference, pp.1237-1240, 2005
[2.8]Sumio Sakka,“Handbook of sol-gel science and technology”Kluwer academic, 2004
[2.9] Y.Huang and H. Zhengn “Advances in Sol-Gel Technology”, Ceramic Industry pp.17-20, 2001
[2.10] H. Sai, H.Fujii, K. Arafune, Y. Ohshita,Y.Kanamori, H.Yugami, and M. Yamaguchi “Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells” Japanese Journal of Applied Physics Vol. 46, No. 6A,pp. 3333–3336,2007
[2.11] Weidong Zhou, Meng Tao, Li Chen, and Hongjun Yang “Microstructured surface design for omnidirectional antireflection coatings on solar cells ”Journal of Applied Physics ,Vol.102, pp.103-105,2007
[2.12] O.Yu. Borkovskaya, N.L. Dmitruk, V.G. Lyapin, A.V. Sachenko, “Computer simulation of the photocurrent collection coefficient in solar cells based on the textured thin-film AlGaAs–GaAs heterostructure” Thin Solid Films, Vol. 402, pp. 451-452, 2004
[2.13] Sumetha Suwanboon ,Ratana Tanattha and Ratana Tanakorn “Fabrication and properties of nanocrystalline zinc oxide thin film prepared by sol-gel method ”J. Sci. Technol, Vol.30, pp. 65-69, 2008
[2.14] Lionel Vayssieres and Karin Keis “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes” Chemistry of Materials, Vol.13, No 12 pp.4396-4398, 2001
[2.15] http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/
[2.16] http://www.eyesolarlux.com/Solar-simulation-energy.htm
[2.17] http://pvcdrom.pveducation.org/CELLOPER/RU/QUANTUM.HTM
[2.18] http://www.energymasters.com/faq_questions.php
Chapter 3
[3.1] Antonio luque and H. Steven “Handbook of photovoltaic science and engineering edit” John Wiley & Sons, 2003
[3.2] Oldwig von Roos “A simple theory of back surface field (BSF) solar cells” J. Appl. Phys, Vol.49, pp.3503-3511, 1978
[3.3] Great Britain: J. Phys. D: Appl. Phys Vol. 9, 1976
[3.4] Jenny Nelson “The physic of solar cells” Imperial college, UK, pp.7-15, 2003
[3.5] Amnon Yariv and Pochi Yeh“Optical waves in crystals - propagation and control of laser radiation. ” John Wiley & Sons ,2003
[3.6] Bang K H, Hwang D K, and Jeong M C “Comparative studies on structural and optical properties of ZnO films grown on c-plane sapphire and GaAs (001) by MOCVD” Solid State Communications ,Vol.126 ,pp.623–627 ,2003
[3.7] http://www.shimadzu.com/products/lab/spectro/5iqj1d0000004vow.html
Chapter 4
[4.1] http://refractiveindex.info/?group=CRYSTALS&material
[4.2] Ming-liang Kao“The fabrication and study of ZnO/MgO core-shell nanowire transistors” NCKU: Department of Chemical Engineering, 2009
[4.3] Hongxia Li, Jiyang Wang, Hong Liu, Changhong Yang and Hongyan Xu “Sol-gel preparation of transparent zinc oxide films with highly preferential crystal orientation” Vacuum ,Vol. 77, pp..57-62, 2004
[4.4] Shane O'Brien, L.H.K. Koh, Gabriel M. Crean “ZnO thin films prepared by a single step sol-gel process” Thin Solid Films, Vol.516, pp. 1391–1395, 2008
[4.5] Kyu-Seog Hwanga, Yun-Ji Leea,b and Seung Hwangbo “Growth, structure and optical properties of amorphous or nano-crystalline ZnO thin films prepared by prefiring-final annealing” Journal of Ceramic Processing Research., Vol. 8, No. 5, pp. 305~311, 2007
[4.6] Wahab, R.; Ansari, S.G.; Kim, Y.S.; Song, M.; Shin, H.S. “The role of pH variation on the growth of zinc oxide nanostructures” Applied Surface Science, Vol.255, pp4891–4896, 2009
Chapter 5
[5.1] J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer” Sol. Energy Mater&. Sol. Cells, Vol.94, pp. 629-633, 2010
[5.2] Takashi Yanagishita, Kazuyuki Nishio, and Hideki Masuda“Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina” Applied Physics Express ,vol. 2, pp.022001, 2009
[5.3] Chiao-Yang Cheng “Deposition of diamond film and diamond-like carbon film by hollow cathode arc ionic plating system and its application on nanoimprinting lithography” NCKU: Department of Chemical Engineering ,2007
[5.4] Hitoshi Sai, Yoshiaki Kanamori, Koji Arafune, Yoshio Ohshita and Masafumi Yamaguchi“Light trapping effect of submicron surface textures in crystalline Si solar cells” Prog. photovolt. res. appl., Vol.15, pp.415–423, 2007
[5.5] Yu Wang and Eric Fossum “Microlens and micro-wedge optical concentrator technology for solid state image sensor” NASA Jet Propulsion Lab,1996
Chapter 6
[6.1] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials” Phys. Rev. B, Vol. 46, pp. 15578–15581, 1992
[6.2] Peichen Yu, Chia-Hua Chang, Ching-Hua Chiu and Chin-Sheng Yang “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns” Adv. Mater, Vol. 21, pp.1618–1621, 2009
[6.3] Aleksandra B. Djurisˇi and Yu Hang Leung “Optical Properties of ZnO Nanostructures” Small, Vol. 2, No. 8-9, pp.944–961, 2006
[6.4] W.J. Fan, and X.B.Xia “Band parameters and electronic structures of wurtzite ZnO and ZnO/MgZnO quantum wells” Journal of Applied Physics, Vol.99, pp.013702, 2006
[6.5] Ming-liang Kao “The fabrication and study of ZnO/MgO core-shell nanowire transistors” NCKU: Department of Chemical Engineering, 2009
[6.6] Jing-Shun Huang “Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing ”Journal of Applied Physics ,Vol.103, pp.014304, 2008