簡易檢索 / 詳目顯示

研究生: 李家合
Li, Chia-Ho
論文名稱: 具各種不同偏心率之垂直環狀鰭管式熱交換器的自然對流研究
Study on Natural Convection of Vertical Annular Finned Tube Heat Exchanger with Various Eccentricities
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 逆算法環狀鰭管式熱交換器偏心率熱傳係數自然對流
外文關鍵詞: Inverse scheme, Vertical annular finned tube heat exchanger, eccentricity, heat transfer coefficient, natural convection
相關次數: 點閱:126下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以逆向方法配合實驗溫度量測值探討鰭片間距、鰭片大小、不同偏心率及邊界條件下,垂直單管環狀鰭管式熱交換器之熱傳特性與流動特性。由於鰭片上的熱傳係數為不均勻的分布,故將鰭片劃分成數個小區域,結合有限差分法、最小平方法及實驗溫度量測值之逆算法來預測鰭片之熱傳係數。為了驗證其準確性,本文使用商用軟體Icepak 15.0進行數值模擬與本文逆算法所得之逆算值做比較,探討不同流動模式與網格劃分對於不同物理模型的適用度,並且利用經驗公式驗證本文選取的流動模式與網格劃分的合理性。
      結果顯示在模擬中選擇Zero equation紊流模式所求得的結果較符合實驗量測溫度與逆向方法結果。在自然對流中,隨著鰭片面積的增加,鰭片的平均熱傳係數會降低;隨著鰭片間距的增加,鰭片的平均熱傳係數會增加,不過上升幅度有趨於平緩的趨勢。根據不同的情況,存在著不同的最佳偏心率,當偏心率小於最佳偏心率時,熱傳係數會隨著偏心率的增加而上升;當偏心率大於最佳偏心率時,熱傳係數則會隨著偏心率的增加而下降。在不同的邊界條件下,開放式邊界條件之平均熱傳係數會大於封閉式邊界條件。

    In this study, the inverse method and the computational fluid dynamics (CFD) software and experimental methods were used to predict the heat transfer and fluid properties of a vertical annular finned tube heat exchanger. The effects of some physical parameters such as fin spacing, fin diameter, boundary conditions, and eccentricity were investigated. Since the heat transfer coefficient on the fins is not uniform, the fins are divided into several sub-regions. Later, the inverse method applied the finite difference method combined with the least squares scheme and experimental data to estimate the heat transfer coefficient on the fins. The simulations in this study is mainly used for steady state analysis. In addition, the effect of choosing the appropriate flow model and grid points was also studied. A proposed correlation is cited for examining the consistency of the flow model chosen. In order to verify the reliability of the prediction results, this study was compared with other related literature and CFD simulation software packages. The results show that the Zero equation is more suitable for this study than the laminar flow and the standard k-ε turbulence model.

    摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XV 符號說明 XVII 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究目的 5 1-4 研究重點與本文架構 6 第二章 逆向方法之理論分析 8 2-1 簡介 8 2-2 數學模型 8 2-3 數值分析方法 11 2-4 逆向熱傳問題 13 2-5 物理量定義 14 第三章 實驗操作與數據分析 17 3-1 簡介 17 3-2 實驗設備 18 3-2-1 實驗試件 18 3-2-2 自然對流系統 20 3-2-3 溫度擷取系統 20 3-3 實驗步驟 22 第四章 數值模擬分析 28 4-1 簡介 28 4-2 基本假設 29 4-3 層流模式(Laminar model) 30 4-4 紊流模式(Turbulence model) 31 4-4-1 Zero equation紊流模式 31 4-4-2標準k-ɛ紊流模式 32 4-5 邊界條件 35 4-5-1穩態封閉系統邊界條件 35 4-5-2穩態開放系統邊界條件 37 4-6 求解方法與程序 37 4-7 模擬結果與分析 40 4-7-1流動模式的選定 40 4-7-2 網格測試 41 4-8 藉由經驗公式確立流動模型與實驗步驟 42 4-8-1 水平環狀鰭管式的數值模擬分析 43 4-8-2 與經驗公式的比較 43 第五章 結果與討論 55 5-1 簡介 55 5-2 鰭片大小對於熱傳係數的影響 56 5-3 鰭片間距對於熱傳係數的影響 57 5-4 偏心率對於熱傳係數的影響 58 5-5 邊界條件對於熱傳係數的影響 59 5-6 數值模擬與逆運算法的比較 59 第六章 綜合結論與未來展望 98 6-1 綜合討論 98 6-2 未來發展方向與建議 99 參考文獻 100

    [1] A.D. Kraus, A. Aziz, J. Welty, Extended Surface Heat Transfer, John Wiley and Sons, Inc., 2001.
    [2] J. R. Senapati, S. K. Dash, and S. Roy, "Numerical investigation of natural convection heat transfer from vertical cylinder with annular fins," International Journal of Thermal Sciences, vol. 111, pp. 146-159, 2017.
    [3] S. Nada, "Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate," International Journal of Heat and Mass Transfer, vol. 50, pp. 667-679, 2007.
    [4] Ş. Yildiz and H. Yüncü, "An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer," Heat and Mass Transfer, vol. 40, pp. 239-251, 2004.
    [5] C. Leung, S. Probert, and M. Shilston, "Heat exchanger design: optimal uniform separation between rectangular fins protruding from a vertical rectangular base," Applied Energy, vol. 19, pp. 287-299, 1985.
    [6] S. Baskaya, M. Sivrioglu, and M. Ozek, "Parametric study of natural convection heat transfer from horizontal rectangular fin arrays," International Journal of Thermal Sciences, vol. 39, pp. 797-805, 2000.
    [7] F. Harahap, E. Rudianto, and I. M. E. Pradnyana, "Measurements of steady-state heat dissipation from miniaturized horizontally-based straight rectangular fin arrays," Heat and Mass Transfer, vol. 41, pp. 280-288, 2005.
    [8] J. R. Senapati, S. K. Dash, and S. Roy, "3D numerical study of the effect of eccentricity on heat transfer characteristics over horizontal cylinder fitted with annular fins," International Journal of Thermal sciences, vol. 108, pp. 28-39, 2016.
    [9] M.N. Ozisik, Heat Conduction, 2nd ed., Wiley, Chapter14, 1993.
    [10] K. Kurpisz, A.J. Nowak, Inverse Thermal Problems, Computational Mechanics Publications, Southampton, 1995.
    [11] J.H Lin, C.K. Chen, Y.T. Yang, An Inverse Estimation of the Thermal Boundary Behavior of A Heated Cylinder Normal to A Laminar Air Treat, International Journal of Heat and Mass Transfer, vol. 43, pp. 3991-4001, 2000.
    [12] T. E. Schmidt, Heat transfer calculations for extended surfaces, Refri. Eng., pp. 351357, 1949.
    [13] H. T. Chen and J. C. Chou, "Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchangers," International Journal of Heat and Mass Transfer, vol. 49, pp. 3034-3044, 2006.
    [14] H. T. Chen and W. L. Hsu, “Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings”, International Journal of Heat and Mass Transfer, vol. 50, pp. 1750-1761, 2007.
    [15] H. T. Chen, Y. J. Chiu, C. S. Liu, and J. R. Chang, "Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger," International Journal of Heat and Mass Transfer, vol. 109, pp. 378-392, 2017.
    [16] E. Sparrow, A. Haji-Sheikh, and T. Lundgren, "The inverse problem in transient heat conduction," Journal of Applied Mechanics, vol. 31, pp. 369-375, 1964.C. H. Huang, I. C. Yuan, and H. Ay, "An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers," International Journal of Heat and Mass Transfer, vol. 52, pp. 4883-4893, 2009.
    [17] H. Ay, J. Jang, and J. N. Yeh, "Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography," International Journal of Heat and Mass Transfer, vol. 45, pp. 4069-4078, 2002.
    [18] J. V. Beck, B. Litkouhi, and C. S. Clair Jr, "Efficient sequential solution of the nonlinear inverse heat conduction problem," Numerical Heat Transfer, Part A Applications, vol. 5, pp. 275-286, 1982.
    [19] C. H. Huang, I. C. Yuan, and H. Ay, "An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers," International Journal of Heat and Mass Transfer, vol. 52, pp. 4883-4893, 2009.
    [20] A. Yilmazer, C. Kocar, “A novel analytical method for heat conduction in convectively cooled eccentric cylindrical annuli”, International Journal of Heat and Mass Transfer, vol. 83, pp. 1-15, 2014.
    [21] H. T. Chen, Y. L. Hsieh, P. C. Chen, Y. F. Lin, K. C. Liu, “Numerical simulation of natural convection heat transfer for annular elliptical finned tube heat exchanger with experimental data”, International Journal of Heat and Mass Transfer, vol. 127, pp. 541-554, 2018.
    [22] V.S. Arpaci, S. H. Kao, and A. Selamet, “Introduction to heat transfer, Prentice Hall”, pp.588, New Jersey, 1999.
    [23] A. Bejan, Convection Heat Transfer. John wiley & sons, 2013.
    [24] J. Jang, "The development of high efficiency air-cooled steam condenser for the power plant. Report of National Council Science," NSC 92-2622-E006-146, Taiwan2004.
    [25] Q. Chen and W. Xu, "A zero-equation turbulence model for indoor airflow simulation," Energy and Buildings, vol. 28, pp. 137-144, 1998.
    [26] B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows", in Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion: Elsevier, 1983, pp. 96-116.
    [27] H. T. Chen, S. T. Lai, L. Y. Haung, “Investigation of heat transfer characteristics in plate-fin heat sink”, International Journal of Heat and Mass Transfer, vol. 50, pp. 352-360, 2013
    [28] 曹瑞昇,垂直環狀鰭管式熱交換器之自然對流熱傳特性的研究,國立成功大學機械工程學系,碩士論文,2018。
    [29] A. Elatar, M. A. Teamah, and M. A. Hassab, "Numerical study of laminar natural convection inside square enclosure with single horizontal fin," International Journal of Thermal Sciences, vol. 99, pp. 41-51, 2016.
    [30] H. T. Chen, S. K. lee, “Estimation of heat-transfer characteristics in the hot surface of glass pane with down-flowing water film”, Building and Environment, vol. 45 (2010), pp. 2089-2099.
    [31] H. T. Chen, H. Y. Chou, H. C. Tseng, J. R. Chang. “Numerical study on natural convection heat transfer of annular finned tube heat exchanger in chimney with experimental data”, International Journal of Heat and Mass Transfer, vol. 127, pp. 483-496, 2018.
    [32] 胡坤,ANSYS CFD 疑難問題實例詳解,人民郵電出版社,2017。
    [33] Icepak User’s Guide, ANSYS, Inc.15.0, 2013.

    QR CODE