簡易檢索 / 詳目顯示

研究生: 李柏軒
Lee, Pai-Hsun
論文名稱: 以分子動力學方法研究石墨烯和奈米碳管之聲子性質
An Investigation of Phonon Properties of Graphene and Carbon Nanotubes using Molecular Dynamics Simulations
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: 分子動力學石墨烯奈米碳管聲子色散關係態密度
外文關鍵詞: Molecular Dynamics, Graphene, Carbon Nanotubes, Phonon Dispersion Relation, Phonon Density of States
相關次數: 點閱:114下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要以分子動力學法研究石墨烯及奈米碳管的聲子性質,如色散關係與態密度等,並嘗試確立一套容易計算且準確的分析方法,接著再對各模型改變不同尺寸、缺陷等條件來探討它們對聲子性質的影響。本文首先以分子動力學模擬一維原子系統的色散關係和態密度,同時與色散關係和態密度的理論結果相比較,來進行方法的測試,從中確認色散關係和態密度的結果完整且正確。接著對二維石墨烯進行不同勢能、尺寸和缺陷比例之色散關係分析,分別探討它們對聲子性值的影響,發現使用不同勢能去模擬相同完美模型的結果會不同,但調整不同尺寸或缺陷比例對色散關係影響不顯著,色散關係結果與文獻比較也非常吻合,也無須如文獻所述採用單位晶胞內的單一種原子進行分析,即可得到完整之色散關係,而本文中所使用的兩種態密度方法也能呈現非常相似的結果。最後對奈米碳管進行聲子特性分析,其中模擬不同螺旋性、尺寸和缺陷比例之模型,發現尺寸差異對色散關係之差異不大,而不同缺陷比例的影響也不顯著,但會造成態密度峰值之頻率位置有些許差異,而在不同螺旋性其餘尺寸相同的結果中兩者色散關係有較明顯的不同,色散關係與文獻比較其趨勢也相符合。在態密度的分析結果中,使用兩種方法進行比較,分別為計算原子速度的自相關函數方法和由色散關係結果直接將波數域疊加的方法,可發現未施加週期性邊界時的模擬,使用第一種方法計算態密度能夠顯示較完整的細節,而在施加週期性邊界的模擬中兩個方法則相同。
    本研究成功確立一套健全的聲子色散關係與態密度的分析方法,分析石墨烯與奈米碳管的聲子性質,可提供往後奈米材料對熱傳相關研究的一個分析依據。

    Phonon properties of graphene and carbon nanotubes, i.e., dispersion relation and density of state, were studied using molecular dynamics simulation. We were trying to establish a correct and simple procedure to analyze the thermal conduction mechanism for nanomaterials. First, the phonon properties of one dimensional atom chain interacting using harmonic potential were calculated and compared with the theoretical results in order to confirm the validity of the procedure. Next, we analyzed pristine graphene with different size and defected one with various number of vacancies. Meanwhile, the effects of size, defect and boundary condition on the phonon properties of carbon nanotube were also simulated. It was found that these effects were not easy to observe when inspecting the dispersion curves. However, the density of state shows obvious differences. In this study, we successfully established the analysis procedure to extract phonon dispersion relation and density of states for nanomaterials from molecular dynamics simulation. This research could pave the way to correlate the thermal conduction mechanism and phonon behavior in the near future.

    目錄 摘要 I Abstract II 致謝 XVI 目錄 XVII 表目錄 XIX 圖目錄 XX 第一章緒論 1 1.1前言 1 1.2文獻回顧 2 1.3動機與目的 5 1.4論文架構 5 第二章理論 7 2.1 分子動力學理論 7 2.1.1 基本理論 7 2.1.2 分子勢能函數 7 2.1.3 週期性邊界條件與最小映像法則 10 2.1.4 系統速度、溫度控制 11 2.1.5 系綜觀念 12 2.2 數值方法 12 2.2.1 Gear's 五階預測修正法 12 2.3 固態物理學理論 14 2.3.1 聲子的色散關係(Phonon Dispersion Relation)14 2.3.2 聲子的態密度(Density of States, DOS) 16 2.3.3 聲子的熱容量(Phonon Heat Capacity) 16 2.3.4 聲子的熱傳導係數 17 第三章分析方法驗證 26 3.1色散關係的分析方法 26 3.2態密度的分析方法 27 3.3一維原子模型與平衡模擬 28 3.4結果與討論 29 3.4.1聲子色散曲線 29 3.4.2態密度 30 第四章石墨烯與奈米碳管聲子性質 38 4.1石墨烯 38 4.1.1晶格結構 38 4.1.2模擬模型與流程 39 4.1.3聲子色散關係 40 4.1.4聲子態密度 42 4.2奈米碳管 44 4.2.1模擬模型與流程 45 4.2.2聲子色散關係 46 4.2.3聲子態密度 48 第五章結論與未來展望 96 5.1 結論 96 5.2未來展望 97 參考文獻 98

    參考文獻
    [1] D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, "Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering," Physical Review B, vol. 79, p. 155413, 2009.
    [2] H.-J. Im, B. Lee, S. S. Brown, and S. Dai, "Computational nanomechanics and thermal transport in nanotubes and nanowires," Journal of Nanoscience and Nanotechnology, vol. 7, p. 3784, 2007.
    [3] A. Debernardi, S. Baroni, and E. Molinari, "Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory," Physical Review Letters, vol. 75, p. 1819, 1995.
    [4] A. J. C. Ladd, B. Moran, and W. G. Hoover, "Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics," Physical Review B, vol. 34, p. 5058, 1986.
    [5] A. A. Maradudin and A. E. Fein, "Scattering of neutrons by an anharmonic crystal," Physical Review, vol. 128, p. 2589, 1962.
    [6] L. Wirtz and A. Rubio, "The phonon dispersion of graphite revisited," Solid State Communications, vol. 131, p. 141, 2004.
    [7] N. de Koker, "Thermal conductivity of MgO periclase from equilibrium first principles molecular dynamics," Physical Review Letters, vol. 103, p. 125902 2009.
    [8] S. Maruyama, "A molecular dynamics simulation of heat conduction of a finite length single-walled carbon nanotube," Microscale Thermophysical Engineering, vol. 7, p. 41, 2003.
    [9] J. Shiomi and S. Maruyama, "Non-Fourier heat conduction in a single-walled carbon nanotube: Classical molecular dynamics simulations," Physical Review B, vol. 73, p. 205420, 2006.
    [10] C. Z. Wang, C. T. Chan, and K. M. Ho, "Tight-binding molecular-dynamics study of phonon anharmonic effects in silicon and diamond," Physical Review B, vol. 42, p. 11276, 1990.
    [11] J. M. Dickey and A. Paskin, "Computer Simulation of the lattice dynamics of solids," Physical Review, vol. 188, p. 1407, 1969.
    [12] S. Maruyama, "A molecular dynamics simulation of heat conduction in finite lenth SWNTs," Physica B, vol. 323, p. 193, 2002.
    [13] Z. Yao, J.-S. Wang, B. Li, and G.-R. Liu, "Thermal conduction of carbon nanotubes using molecular dynamics," Physical Review B, vol. 71, p. 085417, 2005.
    [14] A. Bodapati, P. K. Schelling, S. R. Phillpot, and P. Keblinski, "Vibrations and thermal transport in nanocrystalline silicon," Physical Review B, vol. 74, p. 245207, 2006.
    [15] P. Heino, "Dispersion and thermal resistivity in silicon nanofilms by molecular dynamics," The European Physical Journal B, vol. 60, p. 171, 2007.
    [16] J. R. Lukes and H. L. Zhong, "Thermal conductivity of individual single-wall carbon nanotubes," Journal of Heat Transfer-Transactions of the ASME, vol. 129, p. 705, 2007.
    [17] J.-A. Yan, W. Y. Ruan, and M. Y. Chou, "Phonon dispersions and vibrational properties of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory," Physical Review B, vol. 77, p. 245207, 2008.
    [18] L. A. Falkovsky, "Symmetry constraints on phonon dispersion in graphene," Physics Letters A, vol. 372, p. 5189, 2008.
    [19] J. A. Thomas, J. E. Turney, R. M. Iutzi, C. H. Amon, and A. J. H. McGaughey, "Predicting phonon dispersion relations and lifetimes from the spectral energy density," Physical Review B, vol. 81, p. 081411, 2010.
    [20] M.-J. Huang, C.-C. Weng, and T.-M. Chang, "An investigation of the phonon properties of silicon nanowires," International Journal of Thermal Sciences, vol. 49, p. 1095, 2010.
    [21] D. L. Nika and A. A. Balandin, "Two-dimensional phonon transport in graphene," J Phys Condens Matter, vol. 24, p. 233203, 2012.
    [22] M. Hu, X. Zhang, and D. Poulikakos, "Anomalous thermal response of silicene to uniaxial stretching," Physical Review B, vol. 87, p. 195417, 2013.
    [23] J. Tersoff, "Empirical interatomic potential for carbon, with applications to amorphous carbon," Physical Review Letters, vol. 61, p. 2879, 1988.
    [24] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, J. Kenneth M. Merz, D. M. Ferguson,"A second generation force field for the simulation of proteins, nucleic acids, and organic molecules," Journal of the American Chemical Society, vol. 117, p. 19, 1995.
    [25] J. M. Haile, Molecular Dynamics Simulation: Elementary Methods: John Wiley & Sons, Inc., 1992.
    [26] S. Nose, "A unified formulation of the constant temperature molecular-dynamics methods," Journal of Chemical Physics, vol. 81, p. 511, 1984.
    [27] W. G. Hoover, "Canonical dynamics - Equilibrium phase-space distributions," Physical Review A, vol. 31, p. 1695, 1985.
    [28] G. J. Martyna, M. L. Klein, and M. Tuckerman, "Nose-Hoover chains - the canonical ensemble via continuous dynamics," Journal of Chemical Physics, vol. 97, p. 2635, 1992.
    [29] A. Rahman, "Correlations in the motion of atoms in liquid argon," Physical Review, vol. 136, p. A405, 1964.
    [30] C. L. Tien and G. Chen, "Challenges in microscale conductive and radiative heat-transfer," Journal of Heat Transfer-Transactions of the ASME, vol. 116, p. 799, 1994.
    [31] F. Liu, P. M. Ming, and J. Li, "Ab initio calculation of ideal strength and phonon instability of graphene under tension," Physical Review B, vol. 76, p. 064120, 2007.
    [32] H. W. Zhang, Z. Yao, J. B. Wang, and W. X. Zhong, "Phonon dispersion analysis of carbon nanotubes based on inter-belt model and symplectic solution method," International Journal of Solids and Structures, vol. 44, p. 6428, 2007.
    [33] L. Sandoval, H. M. Urbassek, and P. Entel, "Solid-solid phase transitions and phonon softening in an embedded-atom method model for iron," Physical Review B, vol. 80, p. 214108 2009.
    [34] H. Zhong and J. R. Lukes, "Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling," Physical Review B, vol. 74, p. 125403, 2006.
    [35] V. P. Sokhan, D. Nicholson, and N. Quirke, "Phonon spectra in model carbon nanotubes," Journal of Chemical Physics, vol. 113, p. 2007, 2000.
    [36] E. N. Koukaras, G. Kalosakas, C. Galiotis, and K. Papagelis, "Phonon properties of graphene derived from molecular dynamics simulations," 2015. https://qcn.physics.uoc.gr/sites/files/qcn/Preprints/CCQCN-2015-66.pdf
    [37] P. Anees, M. Valsakumar, and B. Panigrahi, "High temperature phonon dispersion in graphene using classical molecular dynamics," in Solid State Physics: Proceedings of the 58th DAE Solid State Physics Symposium 2013, p. 1070, 2014.
    [38] R. Nizam and M. S. Ahmed, "Predicting the phonon dispersion in different carbon nanotubes using tight binding method," International Journal of Emerging Technology and Advanced Engineering, vol. 4, p. 8, 2014.

    下載圖示 校內:2020-08-28公開
    校外:2020-08-28公開
    QR CODE