簡易檢索 / 詳目顯示

研究生: 鄭宇平
Cheng, Yu-Ping
論文名稱: 考慮緊急水平轉運之隨機型(s, Q)存貨模式
Approximate modeling of a (s, Q) inventory system with emergency lateral transshipment
指導教授: 李賢得
Lee, Shine-Der
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 86
中文關鍵詞: 緊急水平轉運存貨模式普瓦松過程隨機需求
外文關鍵詞: Emergency lateral transshipment, (s, Q) inventory policy, Poisson process, Expected cost model
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在配銷系統面對隨機需求時,常利用水平轉運來共享存貨、降低缺貨機率,即系統中之零售點除供應其顧客直接需求外,亦可透過水平轉運的方式提供或接收存貨,以降低系統之整體需求風險;在實務上,當顧客所需之商品庫存不足時,可向系統中之其他分店進行緊急調貨,以避免缺貨的發生。決策者必須決定此系統之存貨控制政策,即為考慮水平轉運之存貨問題。在現有相關文獻中,討論水平轉運與隨機需求之理論模式發展未臻完善,除文獻十分稀少,亦多採用近似分析,本研究期望發展較精確之單位時間期望總成本模式,以決定各零售點之再訂購點與固定訂購批量。
    本研究考慮單階層多個相同零售點之存貨系統,顧客需求為普瓦松隨機過程(Poisson process),零售點以再訂購點決定是否提供緊急水平轉運,若存貨量低於再訂購點,則不提供轉運以防止零售點本身之缺貨,並向上游廠商訂購一個批量以補足存貨。模式中考量之相關總成本包含:訂購成本、存貨持有成本、缺貨成本以及水平轉運成本。
    根據隨機過程與存貨理論,本研究以數學分析建構考慮水平轉運之存貨模式,探討期望成本模式之特性,並利用所發現之性質發展一求解方法,可快速求得最佳或近似最佳存貨政策。演算結果顯示,俱水平轉運系統其最佳存貨政策下之期望總成本明顯低於無水平轉運之古典存貨模式,亦透過模擬實驗驗證成本分析式之精確性,發現最佳政策下之平均成本估計偏差為0.41%,顯示其近似表現良好。在總共64組之演算實驗中,本解法可求得最佳決策之機率約為63%,而其餘組合皆可求得近似最佳解,平均成本偏差為0.22%,顯示其求解品質良好。另外,經統計分析亦發現,當需求速率較低、前置時間較長,缺貨與存貨持有成本較高,水平轉運與訂購成本較低時,使用水平轉運機制之效益越顯著。

    An inventory replenishment problem with emergency lateral transshipment for a one-echelon supply chain is investigated in this thesis. The system consists of several identical retailers, where demand follows a Poisson process. The (reorder-point s, fixed-quantity Q) ordering policy is implemented; the optimal control policy is to be determined to minimize the expected total cost per unit time. The expected total cost includes ordering cost, inventory holding cost, emergency lateral transshipment cost, and backordering cost of shortage.
    Via renewal reward process, an approximate expected cost model is analyzed. The convexity of the cost function with respect to the control policy has been established. An efficient solution procedure is then developed to find the near optimal or optimal (s, Q) policy. In comparison with the simulation models, computational result with 64 cases has demonstrated that the approximate analysis is very accurate. The approach finds the optimum solution for 40 out of 64 instances with an average cost deviation of 0.22% from those solution found with local enumeration. It indicates that the performance of the approximate model and the solution procedure is excellent. Statistical analysis in the numerical study also illustrates that the advantage of lateral transshipment when a supply chain has low demand rate, long lead time, high shortage and holding cost, or low transshipment and ordering cost.

    摘要 I Extended Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1研究動機 1 1.2研究目的 2 1.3研究範圍與限制 2 1.4研究架構與流程 3 第二章 文獻回顧 5 2.1古典存貨理論 5 2.1.1存貨模式 5 2.1.2存貨政策 6 2.2考慮隨機需求之存貨模式 11 2.3考慮水平轉運之存貨模式 13 2.3.1風險共擔 13 2.3.2水平轉運機制 15 2.3.3水平轉運下之存貨政策 17 2.4小結 19 第三章 水平轉運存貨模式 22 3.1 問題描述 22 3.2 俱水平轉運之存貨模式建構 25 3.2.1水平轉運存貨系統 26 3.2.2期望水平轉運量與期望缺貨量 28 3.2.3期望累積持有存貨量與單位時間期望總成本 33 3.3 理論性質之發現與證明 42 第四章 求解方法發展與演算實驗 52 4.1 求解方法發展 52 4.2 演算範例說明 56 4.3 演算實驗與分析 59 4.3.1 近似模式驗證 62 4.3.2 總成本分析 65 4.3.3 水平轉運效益探討 67 4.4 小節 69 第五章 研究成果與未來研究議題 70 5.1 研究成果與發現 70 5.2 未來研究議題 71 參考文獻 72 附錄1. 演算法程式碼 77 附錄2. 模擬程式碼 83

    一、中文部分
    陳彥方(2007)。俱水平轉運之二階層存貨系統再訂購點暨固定訂購批量模式。國立成功大學工業與資訊管理學系碩博士班碩士論文,台南市。取自https://hdl.handle.net/11296/4b94za

    二、英文部分
    Abad, P. (2000). Optimal lot size for a perishable good under conditions of finite production and partial backordering and lost sale. Computers & Industrial Engineering, 38(4), 457-465.
    Alfredsson, P., & Verrijdt, J. (1999). Modeling emergency supply flexibility in a two-echelon inventory system. Management Science, 45(10), 1416-1431.
    Archibald, T. W., Sassen, S., & Thomas, L. (1997). An optimal policy for a two depot inventory problem with stock transfer. Management Science, 43(2), 173-183.
    Axsäter, S. (1990a). Modelling emergency lateral transshipments in inventory systems. Management Science, 36(11), 1329-1338.
    Axsäter, S. (1990b). Simple solution procedures for a class of two-echelon inventory problems. Operations research, 38(1), 64-69.
    Axsäter, S. (1993). Exact and approximate evaluation of batch-ordering policies for two-level inventory systems. Operations research, 41(4), 777-785.
    Axsäter, S. (2003). Evaluation of unidirectional lateral transshipments and substitutions in inventory systems. European Journal of Operational Research, 149(2), 438-447.
    Bertrand, L. P., & Bookbinder, J. H. (1998). Stock redistribution in two-echelon logistics systems. Journal of the Operational Research Society, 49(9), 966-975.
    Bijvank, M., & Vis, I. F. (2011). Lost-sales inventory theory: A review. European Journal of Operational Research, 215(1), 1-13.
    Dada, M. (1992). A two-echelon inventory system with priority shipments. Management Science, 38(8), 1140-1153.
    Das, C. (1975). Supply and redistribution rules for two-location inventory systems: One-period analysis. Management Science, 21(7), 765-776.
    Das, C. (1976). Approximate solution to the (Q, r) inventory model for gamma lead time demand. Management Science, 22(9), 1043-1047.
    de Kok, T., Grob, C., Laumanns, M., Minner, S., Rambau, J., & Schade, K. (2018). A typology and literature review on stochastic multi-echelon inventory models. European Journal of Operational Research, 269(3), 955-983.
    Diks, E. B., & De Kok, A. (1996). Controlling a divergent 2-echelon network with transshipments using the consistent appropriate share rationing policy. International Journal of Production Economics, 45(1-3), 369-379.
    Ehrhardt, R. (1979). The power approximation for computing (s, S) inventory policies. Management Science, 25(8), 777-786.
    Eppen, G. D. (1979). Effects of centralization on expected costs in a multi-location newsboy problem. Management Science, 25(5), 498-501. doi:10.1287/mnsc.25.5.498
    Evers, P. T. (2001). Heuristics for assessing emergency transshipments. European Journal of Operational Research, 129(2), 311-316.
    Eynan, A., & Kropp, D. H. (1998). Periodic review and joint replenishment in stochastic demand environments. IIE Transactions, 30(11), 1025-1033.
    Forsberg, R. (1997). Exact evaluation of (R, Q)-policies for two-level inventory systems with Poisson demand. European Journal of Operational Research, 96(1), 130-138.
    Güder, F., Zydiak, J., & Chaudhry, S. (1994). Capacitated multiple item ordering with incremental quantity discounts. Journal of the Operational Research Society, 45(10), 1197-1205.
    Goyal, S. K., & Satir, A. T. (1989). Joint replenishment inventory control: deterministic and stochastic models. European Journal of Operational Research, 38(1), 2-13.
    Graves, S. C. (1985). A multi-echelon inventory model for a repairable item with one-for-one replenishment. Management Science, 31(10), 1247-1256.
    Graves, S. C. (1996). A multiechelon inventory model with fixed replenishment intervals. Management Science, 42(1), 1-18.
    Gross, D. (1963). Centralized inventory control in multilocation supply systems. Multistage inventory models and techniques, 1, 47.
    Hadley, G., & Whitin, T. M. (1963). Analysis of inventory systems: Prentice-Hall, Inc., Englewood Chiffs, N. J.
    Harris, F. (1915). What quantity to make at once. The library of factory management, 5, 47-52.
    Herer, Y. T., Tzur, M., & Yücesan, E. (2006). The multilocation transshipment problem. IIE Transactions, 38(3), 185-200.
    Hochmuth, C. A., & Köchel, P. (2012). How to order and transship in multi-location inventory systems: The simulation optimization approach. International Journal of Production Economics, 140(2), 646-654.
    Hoque, M. (2013). A vendor–buyer integrated production–inventory model with normal distribution of lead time. International Journal of Production Economics, 144(2), 409-417.
    Jönsson, H., & Silver, E. A. (1987). Analysis of a two-echelon inventory control system with complete redistribution. Management Science, 33(2), 215-227.
    Kranenburg, A., & Van Houtum, G.-J. (2009). A new partial pooling structure for spare parts networks. European Journal of Operational Research, 199(3), 908-921.
    Krishnan, K. S., & Rao, V. R. K. (1965). Inventory control in N warehouses. Journal of Industrial Engineering, 16(3), 212.
    Kukreja, A., & Schmidt, C. P. (2005). A model for lumpy demand parts in a multi-location inventory system with transshipments. Computers & operations research, 32(8), 2059-2075.
    Kukreja, A., Schmidt, C. P., & Miller, D. M. (2001). Stocking decisions for low-usage items in a multilocation inventory system. Management Science, 47(10), 1371-1383.
    Kutanoglu, E. (2008). Insights into inventory sharing in service parts logistics systems with time-based service levels. Computers & Industrial Engineering, 54(3), 341-358.
    Kutanoglu, E., & Mahajan, M. (2009). An inventory sharing and allocation method for a multi-location service parts logistics network with time-based service levels. European Journal of Operational Research, 194(3), 728-742.
    Lee, H. L. (1987). A multi-echelon inventory model for repairable items with emergency lateral transshipments. Management Science, 33(10), 1302-1316.
    Lee, W. (2005). A joint economic lot size model for raw material ordering, manufacturing setup, and finished goods delivering. Omega, 33(2), 163-174.
    Minner, S., & Silver, E. A. (2005). Evaluation of two simple extreme transshipment strategies. International Journal of Production Economics, 93, 1-11.
    Minner, S., Silver, E. A., & Robb, D. J. (2003). An improved heuristic for deciding on emergency transshipments. European Journal of Operational Research, 148(2), 384-400.
    Nahmias, S., & Smith, S. A. (1994). Optimizing inventory levels in a two-echelon retailer system with partial lost sales. Management Science, 40(5), 582-596.
    Olsson, F. (2009). Optimal policies for inventory systems with lateral transshipments. International Journal of Production Economics, 118(1), 175-184.
    Olsson, F. (2010). An inventory model with unidirectional lateral transshipments. European Journal of Operational Research, 200(3), 725-732.
    Olsson, F. (2015). Emergency lateral transshipments in a two-location inventory system with positive transshipment leadtimes. European Journal of Operational Research, 242(2), 424-433.
    Özdemir, D., Yücesan, E., & Herer, Y. T. (2006). Multi-location transshipment problem with capacitated transportation. European Journal of Operational Research, 175(1), 602-621.
    Paterson, C., Kiesmuller, G., Teunter, R., & Glazebrook, K. (2011). Inventory models with lateral transshipments: A review. European Journal of Operational Research, 210(2), 125-136. doi:10.1016/j.ejor.2010.05.048
    Paterson, C., Teunter, R., & Glazebrook, K. (2012). Enhanced lateral transshipments in a multi-location inventory system. European Journal of Operational Research, 221(2), 317-327. doi:10.1016/j.ejor.2012.03.005
    Patriarca, R., Costantino, F., & Di Gravio, G. (2016). Inventory model for a multi-echelon system with unidirectional lateral transshipment. Expert Systems with Applications, 65, 372-382.
    Pentico, D. W., Drake, M. J., & Toews, C. (2009). The deterministic EPQ with partial backordering: a new approach. Omega, 37(3), 624-636.
    Pirkul, H., & Aras, O. A. (1985). Capacitated multiple item ordering problem with quantity discounts. IIE Transactions, 17(3), 206-211.
    Robinson, L. W. (1990). Optimal and approximate policies in multiperiod, multilocation inventory models with transshipments. Operations research, 38(2), 278-295.
    Sajadieh, M. S., Jokar, M. R. A., & Modarres, M. (2009). Developing a coordinated vendor–buyer model in two-stage supply chains with stochastic lead-times. Computers & operations research, 36(8), 2484-2489.
    Scarf, H. (1960). The Optimality of (s; S) Policies in the Dynamic Inventory Problem, Mathematical Methods in the Social Sciences, Edited by K. Arrow, S. Karlin, and P. Suppes. In: Stanford University Press, Stanford, California.
    Sethi, S. P., & Cheng, F. (1997). Optimality of (s, S) policies in inventory models with Markovian demand. Operations research, 45(6), 931-939.
    Sherbrooke, C. C. (1968). METRIC: A multi-echelon technique for recoverable item control. Operations research, 16(1), 122-141.
    Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling (Vol. 3): Wiley New York.
    Simchi-Levi, D., Kaminsky, P., Simchi-Levi, E., & Shankar, R. (2008). Designing and managing the supply chain: concepts, strategies and case studies: Tata McGraw-Hill Education.
    Song, J.-S., Zhang, H., Hou, Y., & Wang, M. (2010). The effect of lead time and demand uncertainties in (r, q) inventory systems. Operations research, 58(1), 68-80.
    Svoronos, A., & Zipkin, P. (1988). Estimating the performance of multi-level inventory systems. Operations research, 36(1), 57-72.
    Taft, E. (1918). The most economical production lot. Iron Age, 101(18), 1410-1412.
    Tagaras, G. (1989). Effects of pooling on the optimization and service levels of two-location inventory systems. IIE Transactions, 21(3), 250-257.
    Tagaras, G., & Cohen, M. A. (1992). Pooling in two-location inventory systems with non-negligible replenishment lead times. Management Science, 38(8), 1067-1083.
    Tagaras, G., & Vlachos, D. (2002). Effectiveness of stock transshipment under various demand distributions and nonnegligible transshipment times. Production and Operations Management, 11(2), 183-198.
    Tiacci, L., & Saetta, S. (2011). Reducing the mean supply delay of spare parts using lateral transshipments policies. International Journal of Production Economics, 133(1), 182-191.
    Topan, E., & van der Heijden, M. C. (2020). Operational level planning of a multi-item two-echelon spare parts inventory system with reactive and proactive interventions. European journal of operational research, 284(1), 164-175.
    Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size model. Management Science, 5(1), 89-96.
    Xu, K., Evers, P. T., & Fu, M. C. (2003). Estimating customer service in a two-location continuous review inventory model with emergency transshipments. European Journal of Operational Research, 145(3), 569-584.
    Zangwill, W. I. (1966). A deterministic multi-period production scheduling model with backlogging. Management Science, 13(1), 105-119.
    Zheng, Y.-S. (1992). On properties of stochastic inventory systems. Management Science, 38(1), 87-103.

    無法下載圖示 校內:2025-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE