簡易檢索 / 詳目顯示

研究生: 吳昀翰
Wu, Yun-Han
論文名稱: 氧化鎳電洞傳輸層表面鈍化於有機鈣鈦礦發光二極體之研究
Study surface passivation of Nickel Oxide hole transport layer in organic perovskite light-emitting diode
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 81
中文關鍵詞: 鈣鈦礦有機發光二極體電洞傳輸層表面鈍化MeO-2PACz介面鈍化氯化膽鹼介面鈍化啟動能
外文關鍵詞: Perovskite organic light-emitting diodes, , hole transport layer surface passivation, MeO-2PACz interface passivation, choline chloride interface passivation, activation energy
相關次數: 點閱:84下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦發光二極體是一種發展許久,但直至近代才有投入商業可能的一種技術,鑒於其所擁有的高量子產率、廣泛可控的發射波長以及極高的顏色純度,鈣鈦礦發光二極體儼然成為了主導下一世代顯示照明技術的有利競爭者,隨著技術的日新月異,現如今的鈣鈦礦元件於性能方面已有長足的發展,但穩定性不佳始終是鈣鈦礦元件不得不直面的障礙,目前學界普遍認定造成此障礙的主因是鈣鈦礦內部的離子遷移現象。
    本實驗室於過往的研究中發現,鈣鈦礦發光二極體所存在的嚴重遲滯與離子遷移現象,可以透過摻雜兩性離子氯化膽鹼(Choline Chloride, CC)的方式得到顯著改善,然而,現如今對於摻雜氯化膽鹼可以抑制離子遷移現象的真正原因仍有充足的討論空間,由此我變將目光移至電洞傳輸層與主動層的介面處,嘗試透過修飾鈍化電洞傳輸層表面的方式改善元件的遲滯與離子遷移現象,本論文中分別使用了氯化膽鹼與MeO-2PACz對電洞傳輸層進行表面改性,隨後觀察其薄膜型態與光學特性,並在製成元件後進行電性分析與量化元件內部離子啟動能等方式,確認鈍化層對元件表現與離子遷移現象的影響,並提出包含鈍化層的離子遷移模型,研究結果表明電洞傳輸層表面鈍化可能無法有效降低電洞傳輸層表面缺陷,但可以抑制離子遷移的發生,並大幅提升元件表現。

    Perovskite light-emitting diode is a technology that has been developed for a long time, but it was not commercialized until modern times. In view of its high quantum yield, widely controllable emission wavelength and extremely high color purity, perovskite light-emitting diodes have become a favorable competitor to dominate the next generation of display lighting technology. With the rapid development of technology, today's perovskite components have made great progress in performance, but the poor stability has always been the problem of perovskite. The academic community generally believes that the main cause of poor stability is the ion migration phenomenon inside the perovskite.
    In this paper, two materials choline chloride (CC) and MeO-2PACz (SAM) were used to modify the surface of the hole transport layer, and then observed the thin film State and analyze optical properties and conduct electrical analysis and quantify the ion activation energy. Finally, we propose an ion migration model including the passivation layer and the results shows that the surface passivation of the hole transport layer may not be able to effectively reduce the surface defects of the hole transport layer, but it can inhibit the occurrence of ion migration and greatly improve the performance of the device.

    摘要 I Extended Abstract II 目錄 X 圖目錄 XIII 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 有機電激發光元件之發展 2 1.3 有機電激發元件之發展 4 1.4 論文大綱 5 1.4.1 研究動機 5 1.4.2 論文大綱: 7 第二章 鈣鈦礦發光二極體之發展 8 2.1 前言 8 2.2 有機電激發光元件的結構與操作原理 9 2.3 鈣鈦礦發光二極體重要發展文獻 11 2.4 鈣鈦礦光伏元件的遲滯現象 15 2.5 量化鈣鈦礦離子啟動能 18 2.6 摻雜添加劑以抑制鈣鈦礦離子遷移 19 2.7 電洞傳輸層表面鈍化以改善遲滯現象 22 2.8 本章結論 25 第三章 元件製程與實驗量測 26 3.1 前言 26 3.2 ITO基板黃光蝕刻製程 27 3.2.1 ITO玻璃切割 27 3.2.2 ITO基板清洗 27 3.2.3 黃光微影 27 3.2.4 濕式蝕刻 28 3.2.5 ITO基板切割與清洗 29 3.3 鈣鈦礦發光二極體製程 30 3.3.1 電洞傳輸層製作 30 3.3.2 鈍化層製作 30 3.3.3 主動層製作 31 3.3.4 電子傳輸層製作 32 3.3.5 緩衝層與陰極製作 32 3.4 元件特性量測 33 3.4.1 電流-亮度-電壓量測系統 33 3.4.2 變溫量測系統 34 3.4.3 電容量測系統 35 3.4.4 光致發光光譜儀 35 3.4.5 偏壓誘發光致發光光譜 36 3.4.6 紫外-可見光(UV-Vis)吸收光譜儀 37 3.4.7 掃描式電子顯微鏡 37 3.4.8 X光繞射儀 37 3.4.9 原子力顯微鏡 38 3.4.10 X光光電子能譜儀 38 3.5 本章結論 38 第四章 鈣鈦礦發光二極體之研究 39 4.1 前言 39 4.2 鈍化層對電洞傳輸層之影響 41 4.2.1 不同鈍化層經DMSO沖洗後的薄膜表面粗糙度分析 41 4.2.2 不同鈍化層經DMSO沖洗後的薄膜表面元素分析 44 4.3 鈍化層對鈣鈦礦表面形貌的影響 49 4.3.1 不同鈍化層上的鈣鈦礦薄膜型態分析 49 4.3.2 不同製程下的鈣鈦礦薄膜晶體結構分析 50 4.3.3 不同製程下的鈣鈦礦薄膜光學性質分析 51 4.4 不同製程下鈣鈦礦發光二極體之電性分析 53 4.4.1 不同製程下鈣鈦礦發光二極體的遲滯現象 53 4.4.2 不同製程下鈣鈦礦發光二極體的偏壓誘發光致發光光譜 55 4.4.3 不同製程下鈣鈦礦發光二極體的電性分析 57 4.5 介面鈍化與離子遷移現象理論模型 59 4.5.1 鈣鈦礦發光二極體離子遷移模型 60 4.5.2 考慮介面缺陷的離子遷移模型 61 4.6 量化離子遷移效應 65 4.6.1 偏壓後電容-時間變化曲線與溫度之關係 65 4.6.2 時間常數法量化起動能之理論 66 4.6.3 根據電容-時間變化曲線以時間常數法量化啟動能 67 4.7 本章結論 70 第五章 總結與未來工作 71 5.1 總結 71 5.2 未來工作 72 第六章 參考文獻 74

    [1] E. Kinne-Saffran, R. K. H. Kinne, “Vitalism and synthesis of urea”, Am. J. Nephrol. 19, 290 (1999).
    [2] M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38, 2042 (1963).
    [3] C.-W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 57, 913 (1987).
    [4] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539 (1990).
    [5] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 131, 6050 (2009).
    [6] Best research-cell efficiency chart, National renewable energy laboratory, https://www.nrel.gov/pv/cell-efficiency.html, accessed 4 May 2023.
    [7] Y.-K. Chih, J.-C. Wang, R.-T. Yang, C.-C. Liu, Y.-C. Chang, Y.-S. Fu, W.-C. Lai, P. Chen, T.-C. Wen, Y.-C. Huang, C.-S. Tsao, T.-F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite- based light-emitting diodes”, Adv. Mater. 28, 8687 (2016).
    [8] Q. Dong, L. Lei, J. Mendes, F. So, “Operational stability of perovskite light emitting diodes”, J. Phys. Mater. 3, 012002 (2020).
    [9] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, “Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations”, Nat. Energy 2, 17102 (2017).
    [10] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications”, Adv. Funct. Mater. (eds A. Tiwari and L. Uzun), John Wiley & Sons, Inc. Hoboken, NJ, USA, 535 (2015).
    [11] M. Era, S. Morimoto, T. Tsutsui, S. Saito, “Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4”, Appl. Phys. Lett. 65, 676 (1994).
    [12] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nat. Nanotechnol. 9, 687 (2014).
    [13] C. Li, H. Wang, F. Wang, T. Li, M. Xu, H. Wang, Z. Wang, X. Zhan, W. Hu, L. Shen, “Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging”, Light: Sci. Appl. 9, 31 (2020).
    [14] J. Miao, F. Zhang, “Recent progress on highly sensitive perovskite photodetectors”, J. Mater. Chem. C 7, 1741 (2019).
    [15] Y.-H. Kim, H. Cho, T.-W. Lee, “Metal halide perovskite light emitters”, Proc. Natl. Acad. Sci. 113, 11694 (2016).
    [16] E.-P. Yao, Z. Yang, L. Meng, P. Sun, S. Dong, Y. Yang, Y. Yang, “High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites”, Adv. Mater. 29, 1606859 (2017).
    [17] K. Chondroudis, D. B. Mitzi, “Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers”, Chem. Mat. 11, 3028 (1999).
    [18] H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T.-W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science 350, 1222 (2015).
    [19] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski, W. Zhang, “Anomalous hysteresis in perovskite solar cells”, J. Phys. Chem. Lett. 5, 1511 (2014).
    [20] E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, M. G. Christoforod, M. D. McGehee, “Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells”, Energy Environ. Sci. 7, 3690 (2014).
    [21] S. van Reenen, M. Kemerink, H. J. Snaith, “Modeling anomalous hysteresis in perovskite solar cells”, J. Phys. Chem. Lett. 6, 3808 (2015).
    [22] J. M. Azpiroz, E. Mosconi, J. Bisquertcd, F. D. Angelis, “Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation”, Energy Environ. Sci. 8, 2118 (2015).
    [23] H. Cho, C. Wolf, J. S. Kim, H. J. Yun, J. S. Bae, H. Kim, J.-M. Heo, S. Ahn, T.-W. Lee, “High-efficiency solution-processed inorganic metal halide perovskite light-emitting diodes”, Adv. Mater. 29, 1700579 (2017).
    [24] M. H. Futscher, J. M. Lee, L. McGovern, L. A. Muscarella, T. Wang, M. I. Haider, A. Fakharuddin, L. Schmidt-Mende, B. Ehrler, “Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements”, Mater. Horiz. 6, 1497 (2019).
    [25] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells”, Nat. Commun. 5, 5784 (2014).
    [26] Z. Xiao, R. A. Kerner, L. Zhao, N. L. Tran, K. M. Lee, T.-W. Koh, G. D. Scholes, B. P. Rand, “Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites”, Nat. Photonics 11, 108 (2017).
    [27] M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, S. Lilliu, T. J. Savenije, H. Rensmo, G. Divitini, C. Ducati, R. H. Friend, S. D. Stranks, “Maximizing and stabilizing luminescence from halide perovskites with potassium passivation”, Nature 555, 497 (2018).
    [28] J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, “First-principles study of ion diffusion in perovskite solar cell sensitizer”, J. Am. Chem. Soc. 137, 10048 (2015).
    [29] S. Game, G. J. Buchsbaum, Y. Zhou, N. P. Padture, A. I. Kingon, “Ions matter: description of the anomalous electronic behavior in methylammonium lead halide perovskite devices”, Adv. Funct. Mater. 27, 1606584 (2017).
    [30] J. Xing, Q. Wang, Q. Dong, Y. Yuan, Y. Fang, J. Huang, “Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals”, Phys. Chem. Chem. Phys. 18, 30484 (2016).
    [31] Y. Liu, H. Lu, J. Niu, H. Zhang, S. Lou, C. Gao, Y. Zhan, X. Zhang, Q. Jin, L. Zheng, “Temperature-dependent photoluminescence spectra and decay dynamics of MAPbBr3 and MAPbI3 thin films”, AIP Adv. 8, 095108 (2018).
    [32] A. R. M. Alghamdi, M. Yanagida, Y. Shirai, G. G. Andersson, K. Miyano, “Surface passivation of sputtered NiOx using a SAM interface layer to enhance the performance of perovskite solar cells”, ACS Omega 7, 12147 (2022).
    [33] A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis, G. Chistiakova, T. Betram, J. A. Márquez, E. Köhnen, E. Kasparavičius, S. Levcenco, L. Gil-Escrig, C. J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C. A. Kaufmann, L. Korte, V. Getautis, S. Albrecht, “Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells”, Energy Environ. Sci. 12, 3356 (2019).
    [34] M. H. Futscher, M. K. Gangishetty, D. N. Congreve, B. Ehrler, “Quantifying mobile ions and electronic defects in perovskite-based device with temperature-dependent capacitance measurement: frequency vs time domain”, J. Chem. Phys. 152, 044202 (2020).
    [35] T. Wu, L. Collins, J. Zhang, P.-Y. Lin, M. Ahmadi, S. Jesse, B. Hu, “Photoinduced bulk polarization and its effects on photovoltaic actions in perovskite solar cells”, ACS Nano 11, 11542 (2017).
    [36] R. A. Awni, Z. Song, C. Chen, C. LI, C. Wang, M. A. Razooqi, L. Chen, X. Wang, R. J. Ellingson, J. V. Li, T. Yan, “Influence of charge transport layers on capacitance measured in halide perovskite solar cells”, Joule 4, 644 (2020).
    [37] K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, Z. Wei, “Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent”, Nature 562, 245 (2018).
    [38] J. Si, Y. Liu, Z. He, H. Du, K. Du, D. Chen, J. Li, M. Xu, H. Tian, H. He, D. Di, C. Lin, Y. Cheng, J. Wang, Y. Jin, “Efficient and high-color-purity light-emitting diodes based on in-situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses”, ACS Nano 11, 11100 (2017).
    [39] M. H. Futscher, M. K. Gangishetty, D. N. Congreve, B. Ehrler, “Quantifying mobile ions and electronic defects in perovskite-based devices with temperature-dependent capacitance measurements: frequency vs time domain”, J. Chem. Phys. 152, 044202 (2020).
    [40] H. Wang, Z. Chen, J. Hu, H. Yu, C. Kuang, J. Qin, X. Liu, Y. Lu, M. Fahlman, L. Hou, X.-K. Liu, F. Gao, “Dynamic redistribution of mobile ions in perovskite light-emitting diodes”, Adv. Funct. Mater. 31, 2007596 (2021).
    [41] B. W. Lee, “The effect of different choline-halide additives in organic lead halide perovskite light-emitting diode”, 碩士論文, 國立成功大學光電科學與工程學系, (2022).
    [42] T. L. Shen, “The effect of ion migration in organolead halide perovskite-based light-emitting diode”, 碩士論文, 國立成功大學光電科學與工程學系, (2018).
    [43] C. M. Wu, “Characterize the ion-migration of organic-based lead bromide perovskite light-emitting diode via capacitance response”, 碩士論文, 國立成功大學光電科學與工程學系, (2021).
    [44] T. L. Shen, A. Loganathan, T. H. Do, C.-M. Wu, Y.-T. Chen, Z.-J. Chen, N.-C. Chiu, C.-H. Shih, H.-C. Wang, J.-H. Chou, Y.-Y. Hsu, C.-C. Liu, Y.-C. Chang, Y.-S. Fu, W.-C. Lai, P. Chen, T.-C. Wen, T.-F. Guo, “Characterize and retard the impact of the bias-induced mobile ions in CH3NH3PbBr3 perovskite light-emitting diodes”, Adv. Opt. Mater. 10, 2101439 (2021).
    [45] P. Teng, S. Reichert, W. Xu, S.-C. Yang, F. Fu, Y. Zou, C. Yin, C. Bao, M. Karlsson, X. Liu, J. Qin, T. Yu, W. Tress, Y Yang, B. Sun, C. Deibel, F. Gao, “Degradation and self-repairing in perovskite light-emitting diodes”, Matter 4, 3710 (2021).
    [46] P. S. Bagus, C. J. Nelin, C. R. Brundle, B. V. Crist, E. S. Ilton, N. Lahiri, K. M. Rosso, “Main and Satellite Features in the Ni 2p XPS of NiO”, Inorg. Chem. 61, 18077 (2022).
    [47] Y. Luo, P. Khoram, S. Brittman, Z. Zhu, B. Lai, S. P. Ong, E. C. Garnett, D. P. Fenning, “Direct observation of halide migration and its effect on the photoluminescence of methylammoniunm lead bromide perovskite single crystals”, Adv. Mater. 29, 1703451 (2017).
    [48] L. Zhao, J. Gao, Y. L. Lin, Y.-W. Yeh, K. M. Lee, N. Yao, Y.-L. Loo, B. P. Rand, “Electrical stress influences the efficiency of CH3NH3PbI3 perovskite light emitting devices”, Adv. Mater. 29, 1605317 (2017).
    [49] Y. Jia, H. Yu, Y. Zhou, N. Li, Y. Guo, F. Xie, Z. Qin, X. Lu, N. Zhao, “Excess ion-induced efficiency roll-off in high-efficiency perovskite light-emitting diodes”, ACS Appl. Mater. Interfaces 13, 28546 (2021).
    [50] P. Vashishtha, J. E. Halpert, “Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes”, Chem. Mater. 29, 5965 (2017).
    [51] J. H. Warby, B. Wenger, A. J. Ramadan, R. D. J. Oliver, H. C. Sansom, A. R. Marshall, H. J. Snaith, “Revealing factors influencing the operational stability of perovskite light-emitting diodes”, ACS Nano 14, 8855 (2020).
    [52] N. H. Hemasiri, S. Kazim, S. Ahmad, “Reduced trap density and mitigating the interfacial losses by placing 2D dichalcogenide material at perovskite/HTM interface in a dopant free perovskite solar cells”, Nano Energy 77, 105292 (2020).
    [53] A. Zamouche, T. Heiser, A. Mesli, “Investigation of fast diffusing impurities in silicon by a transient ion drift method”, Appl. Phys. Lett. 66, 631 (1995).
    [54] R. A. Awni, Z. Song, C. Chen, C. Li, C. Wang, M. A. Razooqi, L. Chen, X. Wang, R. J. Ellingson, J. V. Li, Y. Yan, “Influence of charge transport layers on capacitance measured in halide perovskite solar cells”, Joule 4, 644 (2020).
    [55] Y. L. Chen, Y. J. Huang, M. H. Yeh, M. S. Fan, C. T. Lin, C. C. Chang, V. Ramamurthy, K. C. Ho, “Nanoflower-like p-doped nickel oxide as a catalytic counter electrode for dye-sensitized solar cells”, Nanomaterials (Basel) 12, 4036 (2022).
    [56] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers”, Nature Photonics 8, 128 (2014).
    [57] Y. Bai, H. Chen, S. Xiao, Q. Xue, T. Zhang, Z. Zhu, Q. Li, C. Hu, Y. Yang, Z. Hu, F. Huang, K. S. Wong, H.-L. Yip, S. Yang, “Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance”, Adv. Funct. Mater. 26, 2950 (2016).
    [58] Q. Wang, C.-C. Chueh, T. Zhao, J. Cheng, M. Eslamian, W. C. H. Choy, A. K.-Y. Jen, “Effects of self-assembled monolayer modification of nickel oxide nanoparticles layer on the performance and application of inverted perovskite solar cells”, Chem. Sus. Chem. 10, 3794 (2017).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE