| 研究生: |
劉濱鳳 Liu, Pin-Feng |
|---|---|
| 論文名稱: |
微膠囊相變化材料應用於建材之熱傳性能研究-以鋁蜂巢板建材為例 Thermal Performance of a Building Material Incorporating Micro-encapsulated Phase Change Material (mPCM)─The Aluminum Honeycomb Board as an Example |
| 指導教授: |
曾俊達
Tzeng, Chun-Ta |
| 共同指導教授: |
賴啟銘
Lai, Chi-Ming |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 微膠囊相變化材料 、熱能儲存 、熱舒適度 |
| 外文關鍵詞: | Micro-encapsulated phase change materials, Heat storage, Thermal comfort |
| 相關次數: | 點閱:186 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究關注到微膠囊相變化材料吸熱與放熱的物理特性,對於熱帶或亞熱帶地區的建築,能有降低空調用電量的效益,是本研究關注的議題;考量外牆及屋頂的結構特性,及微膠囊相變化材料的熱傳遞方式,本研究選用不同熔點之微膠囊相變化材料,與結構穩固並且導熱性能佳的鋁蜂巢板結合,製作單元複合式板材,以垂直放置視為建築外牆進行實驗並分析,探討其對於降低室內能源之效益。
長年觀測台南氣候,計算出一天日射熱得大約為10小時,並且太陽熱得介於200 ~ 600 W/m2區間,因此本研究以正弦波拋物線變化來推估,每10分鐘為一單位,至第5小時分別達到熱得峰值200 W/m2、400 W/m2及600 W/m2,選用37 ℃及43 ℃之微膠囊相變化材料,並且分別製作成鋁蜂巢板複合建材,將製作完成的試體垂直擺放,視為建築外牆,觀測試體一天24小時中,其溫度和熱流數據,並評估其效能。
臺灣位於亞熱帶氣候區,由實驗結果得知,熔點37 ℃及43 ℃微膠囊相變化材料應用於建材,熔點43 ℃微膠囊相變化材料試體尖峰轉移能力較佳,能有效減緩熱能傳遞進入室內,延後建築物用電高峰的時間,進一步降低室內能源消耗;熔點43 ℃微膠囊相變化材料試體折減係數較低,表示較有效減緩熱能傳遞進入室內,室內環境熱舒適度較好,進而達到提高室內熱舒適度,降低用電量的目的。
The problem of carbon dioxide (CO2) emissions and energy depletion is getting worse and worse. In recent years, the issues of Energy saving and CO2 emission reduction are advocated to stop this vicious circle. The Micro-encapsulated Phase Change Material (mPCM) incorporates with the aluminum honeycomb board as a part of the exterior wall structure. The phase change material (PCM) would convert the thermal energy of the outdoor environment into the latent heat energy by the thermophysical properties of the material. The purpose is to reduce or maintain same level of power consumption by reducing and delaying the influence of the solar radiation on the indoor environment thermal comfort. Based on Taiwan climate data analysis, we picked three different peaks of the solar radiation and make use of the two melting points (i.e. 37℃ and 43℃ ) of mPCM as our experimental samples. In these experiment results, the mPCM with melting point at 43℃ has better ability of the time lag and decrement factor, which can effectively reduce and delay the influence of the solar radiation on the indoor environment thermal comfort, and further reduce the power consumption.
中文論文【CS】
CS01 周琪,鋁蜂巢板內置微膠囊相變化材料之動態熱傳特性,國立成功大學土木工程學系碩士論文,2015
CS02 李承叡,PU微膠囊包覆混合正烷類相變化材料的製備及其吸放熱性探討,中國文化大學化學工程與材料工程學系碩士論文,2012
CS03 楊雯欣,懸浮聚合法製備相轉移材料微膠囊,國立中央大學化學工程與材料工程研究所碩士論文,2007
CS04 林敬堯,石膏板內添加微膠囊相變化材料之溫控現象實驗研究,台南科技大學機械工程研究所碩士論文,2009
一般出版品【CB】
CB01 林廣台、李世榮 著,熱傳遞,新科技書局,1989
CB02 張有雄、張枝成、戴昌賢 著,熱傳遞學,全華科技圖書股份有限公司,1988
CB03 J.P. Holman 著,楊春欽、毛迪 譯,熱傳遞學(第六版),科技圖書股份有限公司,1988
CB04 蔡豐欽 著,熱傳遞,高立圖書有限公司,1992
西文文獻【EB】
EB01 Cengel YA, Heat and mass transfer: A practical approach 6th ed. McGraw-Hill, 2006.
EB02 K. Darkwa, Evaluation of regenerative phase change drywall: low-energy buildings application. Int. J. of Energy Research, Vol. 23, No. 14, 1205-1212, 1999.
EB03 S. M. Hasnain, Review on sustainable thermal energy storage technologies, Part I:heat storage materials and techniques, Energy Conversion and Management, Vol. 39, No. 11, 1127-1138, 1998.
EB04 A. Abhat, Low Temperature Latent Heat Thermal Energy Storage:Heat Storage Materials, Solar Energy, Vol. 30, No. 4, 313-332, 1983.
EB05 Belén Zalba , José M. Marin, Luisa F. Cabeza, Harald Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, Vol. 23, No. 3, 251-283, 2003.
EB06 Simen Edsjø Kalnæs, Bjørn Petter Jelle, Phase change materials and products for building applications: A state-of-the-art review and future research opportunities, Energy and Buildings, Vol. 94, 150-176, 2015.
EB07 Mohammed M. Farid, Amar M. Khudhair, Siddique Ali K. Razack, Said Al-Hallaj, A review on phase change energy storage: Materials and applications, Energy Conversion and Management, Vol. 45, No. 9-10, 1597–1615, 2004.
EB08 Xing-xiang Zhang, Xiao-ming Tao, Kit-lun Yick, Xue-chen Wang, Structure and thermal stability of microencapsulated phase-change materials, Colloid and Polymer Science, Vol. 282, No. 4, 330–336, 2004.
EB09 Jun‐Feng Su, Li‐Xin Wang, Li Ren , Zhen Huang, Xian‐Wen Meng, Preparation and characterization of polyurethane microcapsules containing n‐octadecane with styrene‐maleic anhydride as a surfactant by interfacial polycondensation, J. of Applied Polymer Science, Vol. 102, No. 5, 4996–5006, 2006.
EB10 Jeong-Sook Cho, Aehwa Kwon, Chang-Gi Cho, Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system, Colloid and Polymer Science, Vol. 280, No. 3, 260–266, 2002.
EB11 Y. F. Fan, X. X. Zhang, S. Z. Wu, X. C. Wang, Thermal stability and permeability of microencapsulated n-octadecane and cyclohexane, Thermochimica Acta, Vol. 429, No. 1, 25–29, 2005.
EB12 George A. Lane, Low temperature heat storage with phase change materials, International J. of Ambient Energy, Vol. 1, No. 3, 155–168, 1980.
EB13 George A. Lane, Adding strontium chloride or calcium hydroxide to calcium chloride hexahydrate heat storage material, Solar Energy, Vol. 27, No. 1, 73–75, 1981.
EB14 P. Stark, PCM-impregnated polymer microcomposites for thermal energy storage, SAE Trans., Vol. 99, 571-588, 1990.
EB15 Sanjay K. Roy, S. Sengupta, An evaluation of phase change microcapsules for use in enhanced heat transfer fluids, International Communications in Heat and Mass Transfer, Vol. 18, No. 4, 571-588, 1991.
EB16 Y. Yamagishi, T. Sugeno, T. Ishige, H. Takeuchi, A.T. Pyatenko, An evaluation of microencapsulated PCM for use in cold energy transportation medium, Energy Conversion Engineering Conference, Vol. 3, 2077-2083, 1996.
EB17 M. N. A. Hawlader, M. S. Uddin, Mya Mya Khin, Microencapsulated PCM thermal-energy storage system, Applied Energy, Vol. 74, No. 1-2, 195-202, 2003.
EB18 G. L. Zou, Z. C. Tan, X. Z. Lan, L. X. Sun, T. Zhang, Preparation and characterization of microencapsulated hexadecane used for thermal energy storage, Vol. 15, No. 6, 729-732, 2004.
EB19 X. X. Zhang, Y. F. Fan, X. M. Tao, K. L. Yick, Fabrication and properties of microcapsules and nanocapsules containing n-octadecane, Materials Chemistry and Physics, Vol. 88, No. 2-3, 300-307, 2004.
EB20 J. F. Su, L. X. Wang, L. Ren, Preparation and mechanical properties of thermal energy storage microcapsules, Colloid and Polymer Science, Vol. 284, No. 2, 224-228, 2005.
EB21 Younsook Shin, Dong‐Il Yoo, Kyunghee Son, Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). II. Preparation and application of PCM microcapsules, J. of Applied Polymer Science, Vol. 96, No. 6, 2005-2010, 2005.
EB22 Y. H. Tseng, M. H. Fang, P. S. Tsai, Y. M. Yang, Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation, J. of Microencapsulation, Vol. 22, No. 1, 37-46, 2005.
EB23 X. X. Zhang, X. M. Tao, K. L. Yick, Y. F. Fan, Expansion space and thermal stability of microencapsulated n-octadecane, J. of Applied Polymer Science, Vol. 97, No. 1, 390-396, 2005.
EB24 J. F. Su, L. X. Wang, L. Ren, Preparation and characterization of double-MF shell microPCMs used in building materials, J. of Applied Polymer Science, Vol. 97, No. 5, 1755-1762, 2005.
EB25 L.Y. Wang, P. S. Tsal, Y. M. Yang, Preparation of silica microspheres encapsulating phase-change material by sol-gel method in O/W emulsion, J. of Microencapsulation, Vol. 23, No. 1, 3-14, 2006.
EB26 X. Liu, H. Liu, S. Wang, L. Zhang, H. Cheng, RETRACTED : Preparation and thermal properties of form stable paraffin phase change material encapsulation, Energy Conversion and Management, Vol. 47, No. 15-16, 2515-2522, 2006.
EB27 Colas Hasse, Manuel Grenet, André Bontemps, Rémy Dendievel, Hébert Sallée, Realization, test and modelling of honeycomb wallboards containing a Phase Change Material, Energy and Buildings, Vol. 43, No. 1, 232-238, 2011.
EB28 Saad Mahmoud, Aaron Tang, Chin Toh, Raya AL-Dadah, Sein Leung Soo, Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks, Applied Energy, Vol. 112, 1349-1356, 2013.
EB29 Chi-ming Lai, Shuichi Hokoi, Thermal performance of an aluminumhoneycomb wallboard incorporating microencapsulated PCM, Energy and Buildings, Vol. 73, 37-47, 2014.
EB30 Pin-Feng Liu, Yi-Pin Lin, Chun-Ta Tzeng, Chi-Ming Lai, Heat Transfer and Energy Performance of a PVAWallTile Containing Macro-Encapsulated PCM, Energies, Vol. 9, No. 8, 652-663, 2016.
EB31 Qi Zhou, Pin-Feng Liu, Chun-Ta Tzeng, Chi-Ming Lai, Thermal Performance of Microencapsulated Phase Change Material (mPCM) in Roof Modules during Daily Operation, Energies, Vol. 11, No. 3, 679-689 , 2018.
EB32 Yinping Zhang, Guobing Zhou, Kunping Lin, Qunli Zhang, Hongfa Di, Application of latent heat thermal energy storage in buildings:State-of-the-art and outlook, Building and Environment, Vol. 42, No. 6, 2197-2209, 2007.
EB33 T. Karlessi, M. Santamouris, A. Synnefa, D. Assimakopoulos, P. Didaskalopoulos, K. Apostolakis, Development and testing of PCM doped cool colored coatings to mitigate urban heat island and cool buildings, Building and Environment, Vol. 46, No. 6, 570-576, 2011.
EB34 Angela C. Evers, Mario A. Medina, Yuan Fang, Evaluation of the thermal performance of frame walls enhanced with paraffin and hydrated salt phase change materials using a dynamic wall simulator, Building and Environment, Vol. 45, No. 8, 1762-1768, 2010.
EB35 Tiago Silva, Romeu Vicente, Fernanda Rodrigues, António Samagaio, Claudino Cardoso, Development of a window shutter with phase change materials : Full scale outdoor experimental approach, Energy and Buildings, Vol. 88, 110-121, 2015.
EB36 K. Darkwa, J. S. Kim, Thermal Analysis of Composite Phase Change Drywall Systems, J. of Solar Energy Engineering, Vol. 127, No. 3, 352-356, 2005.
EB37 T. Lecompte, P. Le Bideau, P. Glouannec, D. Nortershauser, S. Le Masson, Mechanical and thermo-physical behaviour of concretes and mortarscontaining phase change material, Energy and Buildings, Vol. 94, 52-60, 2015.
EB38 I. Mandilaras, M. Stamatiadou, D. Katsourinis, G. Zannis, M. Founti, Experimental thermal characterization of a Mediterranean residential building with PCM gypsum board walls, Building and Environment, Vol. 61, 93-103, 2013.
EB39 A. K. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage, Building and Environment, Vol. 32, No. 5, 405-410, 1997.
EB40 Tongyu Zhou, Jo Darkwa, Georgios Kokogiannakis, Thermal evaluation of laminated composite phase change material gypsum board under dynamic conditions, Renewable Energy, Vol. 78, 448-456, 2015.
網際網路【CH】
CH01 交通部中央氣象局網站https://www.cwb.gov.tw/V7/
CH02 Microtek Laboratories INC. https://www.microteklabs.com/
校內:2023-08-01公開