| 研究生: |
蔡敏嘉 Cai, Min-Jia |
|---|---|
| 論文名稱: |
全新世中期以來臺灣地區高山土壤硼同位素與環境變遷之關聯 Relationships Between Boron Isotope of Mountainous Soils and Environmental Changes in Taiwan Since Middle Holocene |
| 指導教授: |
游鎮烽
You, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 硼同位素 、台灣 、高山土壤 、全新世 |
| 外文關鍵詞: | Boron isotope, Taiwan, Moutainous Soil, Holence |
| 相關次數: | 點閱:152 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用高山土壤硼同位素比值,探討全新世中期以來臺灣高山氣候變化。臺灣高山地勢陡峭採樣不易,相關研究少,臺灣地區尚無高山土壤的硼同位素研究,本研究樣本為臺灣山區海拔3092公尺的南華天池土壤剖面,剖面深度0~120公分依照土壤性質分為12個樣本,利用HF-HNO3法將樣品全溶消化,後續利用微昇華純化法提取岩石溶液之硼,岩石標準品測定選用玄武岩標準品IAEA B-5。結果顯示南華天池剖面全溶相中硼濃度分佈範圍在53.4~83.2 μg/g之間,硼同位素比值(δ11B)範圍在-2.2~-10.2‰之間。利用硼同位素比值、濃度與其他環境指標(CIA、TOC、粒徑)綜合討論過去臺灣高山的環境變遷,結果指出臺灣高山土壤硼同位素比值可能受控於季風變化、環境溫溼條件、粒徑變化、全新世小冰期的影響,另外研究區域尚未受到人為開發、生物循環影響小。3420年前由於溫度降低,導致總有機碳分解緩慢、堆積含量增加,觀察結果與臺灣其他地區相同,也許中國黃土高原類似;冬季季風減弱可能是土壤的風積物粒徑變小間接導致δ11B偏負,可能是受到過去氣候變化的影響,研究區域內的風化強度呈現弱相關;以沈積時間點相對年代推測,在全新世小冰期(Little ice age)時高山形成的凍原可能是δ11B明顯正異常的原因,硼同位素可能指示出研究區域內曾經有環境或氣候轉變的事件,我們回顧了多指標在地球化學應用中的成果,並提出了地球化學領域硼同位素的研究方向。
Boron has two stable isotopes, 10B and 11B, with natural abundance 19.8% and 80.2%, respectively. It is a new proxy for tracking environmental changes. In contrast to other natural archives (e.g., river water, rock), the currently available B isotopic data of mountain soils in Taiwan are quite limited because of its difficulty on sampling. In this study, we provide B concentrations and isotopic compositions in a 120 cm soil profiles sampled in northeastern Taiwan. It is divided into 12 subsamples according to the properties of the soils. The results showed that the boron concentration in the bulk dissolved phase of Nanhua Tianchi profile ranged from 53.4 to 83.2 μg/g, and the boron isotope ratio (δ11B) ranged from -2.2 to -10.2‰. Combined with boron concentration and other environmental indicators (CIA, TOC, grain size), the results indicate that the boron isotope ratio in soils may be controlled by monsoon changes, environmental temperature and humidity conditions, grain size changes, and frozen soil in Little Ice Age. Due to the decrease in temperature before 3420 years ago, the total organic carbon decomposes slowly and the accumulation rate increases. The observed TOC results are the same as Lake sediment of Taiwan, and may be similar to the Chinese Loess Plateau. The δ11B-inferred climate changes between glacial and interglacial periods show similar trend with changes recorded by the lake sediment in Taiwan and loess/paleosoil profile in Loess Plateau in China. The weakening of the winter monsoon may be due to the decrease in the fine grain size of the soil, which indirectly leads to negative δ11B, reflecting the past climate change. It can be inferred that there is a significant positive anomaly of δ11B in the high mountains soil profile during the Little Ice Age in Holocene. Boron isotopes may be a useful tracer for some large-scale events in the study area that once caused significant environmental or climatic transitions. We provide the first data of boron isotopic compositions in high mountain soil in Taiwan and suggest the possible controlling mechanisms of them. This study constrains the δ11B in high mountain soil profile and broaden the potential application in natural archives.
Abdessadok, S. (1999) “Atlas of micromorphology of mineral alteration and weathering” Anthropologie, 103:0-642
Agyei, E. K. (1968) “Isotopic and Elemental Composition of Boron in Meteorites, Tektites, and Terrestrial Minerals.” PhD Thesis, McMaster University, Canada.
Balan, E., Trocellier, P., Jupille, J., Fritsch, E., Muller, J. P., & Galas, G. (2001) ”Surface chemistry of weathered zircons” Chemical Geology, 181:13-22.
Bassett, R.L. (1990)“A critical evaluation of the available measurements for the stable isotopes of boron.” Apply Geochemistry, 5:541-554.
Bein, A. &Arad, A. (1992) ”Formation of saline GWs in the Baltic region through freezing of seawater during glacial periods.” Journal of Hydrology, 140:75–87.
Bern, C. R., Thompson, A. & Chadwick, O. A. (2015) ”Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model” Geochimica et Cosmochimica Acta, 151:1-18.
Brimhall, G. H. &Dietrich, W. E. (1987) “Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis” Geochimica et Cosmochimica Acta, 51:567-587.
Brimhall, G. H., Lewis, C. J., Ague, J. J., Dietrich, W. E., Hampel, J. & Rix P. (1988) “Metal enrichment in bauxites by deposition of chemically mature aeolian dust” Nature, 333: 819-824.
Brimhall, G. H., Christopher, J. L., Ford, C. J., Bratt, G., & Taylor, O. W., (1991) “Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in lateritization” Geoderma, 51: 51-91.
Casanova, J., Négrel, P., & Blomqvist, R. (2005) “Boron isotope fractionation in groundwaters as an indicator of past permafrost conditions in the fractured crystalline bedrock of the fennoscandian shield.” Water research, 39 : 362-370.
Catanzaro, E.J., Champion, C.E., Garner, E.L., Malinenko, G., Sappenfield, K.M., & Shields, W.R. (1970) “Boric Acid; Isotopic and Assay Standard Reference Materials.” US Natl. Bur. Stand. Publ. No. 260-17, US Gov. Print Off., Washington, DC.
Chadwick, O. A., Brimhall, G. H. & Hendricks, D. M. (1990) “From a black to a gray box a mass balance interpretation of pedogenesis” Geomorphology, 3: 369-390.
Chaussidon, M. &Albare, De. F.(1992)“Secular boron isotopic variationsin the continental crust: an ion microprobe study.” Earth and Planetary Science Letters, 108:229–241.
Chetelat, B., Gaillardet, J. &Freydier, R. (2009) “Use of B isotopes as atracer of anthropogenic emissions in the atmosphere of Paris, France.” Applied Geochemistry, 24:810–820.
Chetelat, B., Liu C. Q., Gaillardet, J., Wang, Q. L., Zhao, Z. Q., Liang, C. S. & Xiao, Y. K. (2009)” Boron isotopes geochemistry of the Changjiang Basin Rivers.” Geochimica et Cosmochimica Acta, 73: 6084–6097.
Chinese Academy of Sciences (Compilatory Commission of Physical Geography of China). (1984) Physical Geography of China: Climate. Science Press, Beijing, 1-30 (in Chinese).
Cividini, D. Lemarchand, D., Chabaux, F., Boutin, R., Pierret, M. C.(2010)” From biological to lithological control of the B geochemical cycle in a forest watershed (Strengbach, Vosges)” Geochimica et Cosmochimica Acta, 74:3143-3163.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvönen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton, W. J., Megan S. J., Wallenstein, M. D., Martin Wetterstedt, J. Å., Bradford, Mark. A. (2011) “Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward.” global change biology, 17:3392-3404.
Coplen, T., Bo ̈hlke, J., De Bievre, P., Ding, T., Holden, N., Hopple, J., Krouse, H., Lamberty, A., Peiser, H., & Revesz, K. (2002) “Isotope-abundance variations of selected elements: (IUPAC technical report).”Pure Apply Chemistry 74, 1987-2017.
Dąbkowska, N. H., & Jaworska, H. (2001) “Titanium in alfsols formed from glacial deposits of different ages in Poland” Quatenary International, 78: 61-67.
Ding, Z., Liu, T., Rutter, N. W., Yu, Z., Guo, Z. &Zhu, R. (1995) ” Ice-Volume Forcing of East Asian Winter Monsoon Variations in the Past 800,000 Years” Quaternary Research, 44:149-159.
Driese, S. G., Mora, C. I., Stiles, C. A., Joeckel, R. M., & Nordt, L. C. (2000) “Mass-balance reconstruction of a modern Vertisol: implications for interpreting the geochemistry and burial alteration of paleo-Vertisols” Geoderma, 95:179-204.
Egli, M., & Fitze, P. (2000) “Formulation of pedologic mass balance based on immobile elements: a revision.” Soil Science, 165:437-443.
Eldor, A. P. (2016) “The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization.” Soil Biology & Biochemistry, 98: 109-126.
Elmaci, G., Icten, O., Nedim, A. A. & Zümreoglu, K. B. (2015) “Boron isotopic fractionation in aqueous boric acid solution over synthetic minerals: effect of layer and surface charge on fractionation factor.” Applied Clay Science, 107:117–121.
Gladney, E. S., Roelandts, L. (1988)”Compilation of Elemental Concentration Data for CCRMP Soils SO‐1 to SO‐4” Geostandards Newsletter, 13: 217-268.
Goldberg, S., Forster, H. S. & Heick, E. L. (1993)” Boron Adsorption Mechanisms on Oxides, Clay Minerals, and Soils Inferred from Ionic Strength Effects” Soil Science Society of America Journal, 57: 704-708.
Goldberg, S. (1997) “Reactions of boron with soils.” Plant and Soil, 193:35-48.
Goldberg, S., Su, C. (2007) “ New Advances in Boron Soil Chemistry” Advances in Plant and Animal Boron Nutrition, 313-330.
Gökhan, E., Okan, I., Ahmet, N. A., & Birgül, Z. K. (2015) ”Boron isotopic fractionation in aqueous boric acid solutions over synthetic minerals: Effect of layer and surface charge on fractionation factor.” Applied Clay Science, 107:117-121
Hafsten, U. (1970) “A sub-division of the late Pleistocene period on a synchronous basis, intended for global and universal usage.“ Palaeogeography, Palaeoclimatology, Palaeoecology, 7:279-296.
Hemming, N. G., Hanson, G. N. (1992)” Boron isotopic composition and concentration in modern marine carbonates.” Geochimica et Cosmochimica Acta, 56:537-543.
IUPAC (1998) “Isotopic compositions of the elements.” Pure Apply Chemistry 70:217-235.
Jean, L. D., Oliver, A. C., & Peter, M. V. (2016) “Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand.” Journal of Geophysical Research:Earth Surface, 121:1619-1634.
James, I. D. (2005)"Surface and Ground Water, Weathering, and Soils.” Treatise on geochemistry, volume 5.
Jenny, H. (1941) "Factors of soil formation.” New York: McGraw-Hill.
Jersak, J., Amundson R., & Brimhall G. H. (1995) “A mass balance analysis of podzolization: examples from the northeastern United States.“ Geoderma, 66: 15-42.
Jo ̈nsson, O. & Nilsson, C. (1996) “Aska fra ̊n biobra ̈nslen (Ash from biofuel). K. skogs-lantbr.akad. tidskr, 135:25-36. (In Swedish.)
Kaup, B. S. & Carter, B. J. (1987) “Determining Ti source and distribution within a Paleustalf by micromorphology, submicroscopy and elemental analysis” Geoderma, 40: 141-156.
Khanna, P. K., Raison, R. J. & Falkiner, R. A. (1994) “Chemical properties of ash derived from Eucalyptus litter and its effects on forest soils.” Forest Ecology and Management, 66:107-125.
Lan, C. Y., Lee, T., Jahn, B. M., Yui, T. F.(1995)“ Taiwan as a witness of repeated mantle inputs-SrNdO isotopic geochemistry of Taiwan granitoids and metapelites” Chemical Geology, 124: 287-303.
Lemarchard, D., Gallardet, J., Lewin, & Allengre, C. J. (2000) “The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH.” Nature, 408:951-954.
Lemarchard, D., Gallardet, J., Lewin, & Allengre, C. J. (2002) “Boron isotope systematics in large rivers: Implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic” Chemical Geology, 190:123-140.
Lemarchand, E., Schott, J., & Gaillardet, J. (2005) “Boron isotopic fractionation related to boron sorptionon humic acid and structure of surface complexes formed.” Geochimica et Cosmochimica Acta, 69:3519-3533.
Lemarchand E., Schott, J., & Gaillardet, J. (2007) “How surface complexes impact boron isotope fractionation: evidence from Fe and Mn oxides sorption experiments.” Earth and Planetary Science Letters, 260:277-296.
Lemarchand, D., Cividini, D., Turpault, M. P., Chabauxa, F.(2012)” Boron isotopes in different grain size fractions: Exploring past and present water–rock interactions from two soil profiles (Strengbach, Vosges Mountains)” Geochimica et Cosmochimica Acta, 98:78-93.
Langley-Turnbaugh, S. J. & Bockheim, J. G. (1998) "Mass balance of soil evolution on late quaternary marine terraces in coastal Oregon" Geoderma, 84:265-288.
Letkeman L. P., Tiessen, H., & Campbell, C. A. (1996) “Phosphorus transformations and redistribution during pedogenesis of western Canadian soils” Geoderma, 71: 201-218.
Lichter, J. (1998) “Rates of weathering and chemical depletion in soils across a chronosequence of Lake Michigan sand dunes.” Geoderma, 85:255-282.
Lucas, R. E., & Davis, J. F. (1961) “Relationships between pH values of organic soils and availabilities of 12 plant nutrients.” Soil Science, 92:177-182.
Marschall, H. R., Meyer, C, Wonder, B., Ludwig, T., & Heinrich, W. (2009) ”Experimental boron isotope fractionation between tourmaline and fluid: confirmation from in situ analyses by secondary ion mass spectrometry and from Rayleigh fractionation modelling.” Contributions to Mineralogy and Petrology, 158:675-681.
Merritts, D. J., Chadwick, O. A., Hendricks, D. M., Brimhall, G. H., & Lewis, C. J. (1992) “The mass balance of soil evolution on late Quaternary marine terraces, northern California” Geological Society of America Bulletin, 104:1456-1470.
Meyers, P. A., Bernasconi, S. M. &Forster, A. (2006) ” Origins and accumulation of organic matter in expanded Albian to Santonian black shale sequences on the Demerara Rise, South American margin.” Organic Geochemistry, 37:1816-1830.
Michael, M. (2002)” Little Ice Age” The Earth system: physical and chemical dimensions of global environmental change, 1: 504–509.
Mossadik, H. (1997) ” Les isotopes du bore, traceurs naturels dans les eaux : mise au point de l'analyse en spectrometrie de masse a source solide et applications a differents environnements” PhD dissertation, Orleans, France.
Nakano, T., & Nakamura E. (1998) “Static multicollection of Cs2BO2+ ions for precise boron isotopic analysis with positive thermal ionization mass spectrometry.” International Journal of Mass Spectrometry, 176:13-21.
Nesbitt, H. W. & Young, G. M. (1982) ” Early Proterozoic climates and plate motions inferred from major element chemistry of lutites.” Nature, 299:715-717.
Nordt, L. C., Wilding, L. P., Lynn, W. C., & Crawford ,C. C. (2004) “Vertisol genesis in a humid climate of the coastal plain of Texas, U. S. A.” Geoderma, 122:83-102.
Odigie, K. O., Khanis, E., Hibdon, S. A., Jana, P., Araneda, A., Urrutia, R. &Flegal, A. R. (2016)” Remobilization of trace elements by forest fire in Patagonia, Chile.” Regional Environmental Change, 16:1089–1096.
Oh, N. H., & Richter, D. D. (2005) “Elemental translocation and loss from three highly weathered soil-bedrock profiles in the southeastern United States.” Geoderma, 126: 5-25.
Palmer, M. R., Spivack, A. J. & Edmond, J. M. (1987) “Temperature and pH controls over isotopic fractionation during absorption of boron marine clay.” Geochimica et Cosmochimica Acta, 51: 2319–2323.
Palmer, M. R. & Swihart, G. H. (1996) “Boron isotope geochemistry: an overview.” Reviews in Mineralogy and Geochemistry, 33:709–744.
Peltola, P. &Åström, M.(2006)” Can boron and boron isotopes be used as a sedimentary marker for fire events? A case study from a historic urban fire event in W Finland” Applied Geochemistry, 21:941-948.
Peppin, S. S. L., & Style, R. W. (2013) “The Physics of Frost Heave and Ice-Lens Growth” Vadose Zone Journal, 12.
Pohlandt, K. & Marutzky, R. (1994) “Oncentration and distribution of polychixrinated dibenzo-p-dioxins(PCDD) and polychlorinated dibenzofurans (PCDF) in wood ash.” Chemospher, 28:1311-1314.
Ramakumar, K. L., Parab, A. R., Khodade, P. S., Almaula, A. I., Chitambar, S. A., Jain, H. C., (1985)” Determination of isotopic composition of boron” Journal of Radioanalytical and Nuclear Chemistry, 94: 53–61.
Raymond, R. W., & Nyle, C. B. (2016) “The Nature and Properties of Soils. 15th edition” Pearson Education.
Rose, E. F., Chaussidon, M., & France, C. (2000)” Fractionation of Boron isotopes during erosion processes: The example of Himalayan rivers”Geochimica et Cosmochimica Acta, 64:397-408.
Schmitt, A. D., Vigier, N., Lemarchand, D., Millot, R., Stillet, P. &Chabaux, F. (2012)” Processes controlling the stable isotope compositions of Li, B, Mg and Ca in plants, soils and waters: A review.” Comptes Rendus Geoscience, 344:704-722.
Schwarz, H.P., Ageyi, E.K., & McMullen, C.C. (1969) “Boron isotopic fraction during clay adsorption from sea water.” Earth and Planetary Science Letters, 6: 1-5.
Selvaraj, K., Chen, C. T. A., Lou, J. Y. & Kotlia, B. S. (2011) ”Holocene weak summer East Asian monsoon intervals in Taiwan and plausible mechanisms.” Quaternary International, 229:57–66.
Selvaraj, K., Chen, C. T. A. &Lou, J. Y. (2007) “ Holocene East Asian monsoon variability: Links to solar and tropical Pacific forcing” Geophysical Research Letters, 34:1-5.
Selvaraj, K., Wei, K. Y., Liu, K. K. &Kao, S. J. (2012) ” Late Holocene monsoon climate of northeastern Taiwan inferred from elemental (C, N) and isotopic (d13C, d15N) data in lake sediments.” Quaternary Science Reviews, 37:48-60.
Sheng, D., Zhang, S., Yu, Z. &Zhang, J. (2013)” Assessing frost susceptibility of soils using PCHeave.” Cold Regions Science and Technology, 95:27-38.
Spivack, A. J., Edmond, J. M., (1986)” Boron isotope exchange between seawater and the oceanic crust.” Geochimica et Cosmochimica Acta, 51:1033-1043.
Starinsky, A. & Katz, A. (2003) “The formation of natural cryogenic brines.” Geochimica et Cosmochimica Acta, 67:1475–1484.
Simonson, R. W. (1959) “Outline of a Generalized Theory of Soil Genesis” Soil Science Society of America Journal, 23:152-156.
Soil Survey Staff. (1993) “Soil survey manual.” USDA Handbook 18. Government Printing Office, Washington, D.C.
Taboada, T., Cortizas, A. M., Garcia, C., & Garcia-Rodeja, E. (2006) “Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain.” Geoderma, 131:218-236.
Tsai, H., Hseu, Z. Y., Huang, W. S., & Chen, Z. S. (2007) “Pedogenic approach to resolving the geomorphic evolution of the Pakua river terraces in central Taiwan.” Geomorphology, 83:14-28.
Tsai, H., Hseu, Z. Y., Huang, W. S., & Chen, Z. S. (2007a) “Pedogenic approach to resolving the geomorphic evolution of the Pakua river terraces in central Taiwan.” Geomorphology, 83:14-28.
Tsai, H., Huang, W. S., & Hseu, Z. Y. (2007b) “Pedogenic correlation of lateritic river terraces in central Taiwan.” Geomorphology, 88:201-213.
Vanderpool, R. A. & Johnson, P. E. (1992) “Boron isotope ratios in commercial produce and boron-10 foliar and hydroponic enriched plants.” Jounary agriculture and food chemistry, 40:462-466.
Vengosh, A., Kolodny, Y., Starinsky, A., Chivas, A. R. & McCulloch, M. T. (1991) “Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates.” Geochimica et Cosmochimica Acta, 55:2901-2910.
Vengosh, A., Starinsky, A., Kolodny, Y., Chivas, A. R., & Raab, M. (1992) “Boron isotope variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate” Geology, 20:799-802.
Vengosh, A., Starinsky, A., Kolodny, Y. & Chivas, A. R. (1994) ”Boron isotope geochemistry of thermal springs from the northern Rift Valley, Israel” Journal of Hydrology, 162:155-169.
Wang, B. S., You, C. F., Huang, K. F., Wu, S. F.&Aggarwal, S. K. (2010)” Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS.” Talanta, 82:1378-84.
Wei, H. Z., Lei, F., Jiang, S. Y., Lu, H. Y., Xiao. Y. K., Zhang, H. Z. &Sun, Z. F.(2015) “Implication of boron isotope geochemistry for the pedogenic environments in loess and paleosol sequences of central China.” Quaternary Research, 83:243–255.
Wenske, D., Bösea, M., Frechenb, M., & Lüthgensa, C., (2009)“ Late Holocene mobilisation of loess-like sediments in Hohuan Shan, high mountains of Taiwan” Quaternary International, 234: 174-181
White, A. F., Bullen, T. D., Schulz, M. S., Blum, A. E., Huntington, T. G., & Peters, N. E. (2001) “Differential rates of feldspar weathering in granitic regoliths.” Geochimica et Cosmochimica Acta, 65:847-869.
Wiesera, M. E., Iyera, S. S., Krousea, H. R. &Cantagallo, M. I. (2011)” Variations in the boron isotope composition of Co ea arabica beans.” Applied Geochemistry, 16:317-322.
Willams, L.B., Wieser M. E., Fennell, J., Hutcheon, I. & Hervig, R. L.(2001) “Application of boron isotopes to the understanding of fluid±rock interactions in a hydrothermally stimulated oil reservoir in the Alberta Basin, Canada.” Geofuids , I:229-240
Willams, L.B., & Hervig, R. L. (2004) “Boron isotope composition of corals: a potential tracer of organic contaminated fluids.” Applied Geochemistry 19, 1625-1636.
Xiao, J., Nakamura, T., Lu, H. & Zhang, G. (2003)“Holocene climate changes over the desert/loess transition of north-central China.” Earth and Planetary Science Letters, 197:11-18.
Xiao, Y. K., Beary, E. S., Fassett, J. D., (1988)” An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry.” International Journal of Mass Spectrometry and Ion Processes, 85:203-213.
Xiao, Y. K . & Wang, L. (1998) “Effect of NO3 on the isotopic measurement of boron.” International Journal of Mass Spectrometry, 178:213-220.
Xiao, Y. K . & Wang, L. (2001) ”The effect of pH and temperature on the iso-topic fractionation of boron between saline brine and sediments.” Chemical Geology, 171:253–261.
Zhou, W., Yu, X., Jull, A. J. T., Burr, G., Xiao, J. Y., Lu, X. &Xian, F. (2004)”High-resolution evidence from southern China of an early Holocene optimum and a mid- Holocene
中文參考文獻
千田勝己,臺灣某些紅壤的黏土礦物特性與有關理化性質之研究,國立臺灣大學農業化學研究所博士論文,1980年。
王為敏,臺灣澎湖群島近代土壤與古土壤之地球化學與風化化學之比較研究,國立臺灣大學農業化學研究所博士論文,1997年。
王子豪,利用珊瑚骨骼硼同位素組成評估南海過去三百年海洋酸化速率及建立巨昇華純化方法應用於硼元素分離,國立成功大學地球科學所碩士論文,2016年。
何正品、簡士濠、許正一 ,玉山國家公園不同海拔梯度下之土壤理化性質及碳儲存量評估,玉山國家公園管理處自行研究報告,2011年。
汪良奇,以湖泊沉積物內花粉與矽藻重建臺灣東部晚全新世氣候與環境變遷,臺灣大學生態學與演化生物學研究所學位論文,2011。
林淑芬,由孢粉紀錄看宜蘭平原最近4200年來的自然環境演變及其與史前文化發展之關係,國立臺灣大學地質科學研究所博士論文,2004年。
林彥伯,硼同位素在氧化物吸附過程之分化行為 及其在海洋 pH 代用指標之潛力評估 ,國立成功大學地球科學所碩士論文,2014年。
洪麗娟,1996-2008臺灣降雨的特性分析,國立中央大學大氣物理研究所碩士論文,2009年。
陳彥谷,臺灣中部地區紅壤化學風化與質量平衡之研究,國立彰化師範大學地理學系碩士論文,2008年。
陳秋芸,咖啡豆微量元素及鍶-硼同位素組成與產地關聯性之探討,國立成功大學地球科學所碩士論文,2011年。
陳姿彤,以臺灣中部雲杉樹輪重建三百年古氣候:利用傳統樹輪及總體經驗模態分解法,國立臺灣大學地質科學研究所碩士論文,2011年。
陳勁志,以臺灣中部地區頭社盆地生物指標及碳同位素紀錄探討中全新世以來古環境與古氣候之變化,國立中山大學海洋科學研究所博士論文,2014年。
陳文山 主編,臺灣地質概論,中華民國地質學會出版,2016年。
張仲民,普通土壤學,國立編譯館,1987年。
張麗旭,臺灣之地層,臺灣銀行季刊,1955。
黃文樹,八卦台地南部階地地形與土壤化育之研究,國立彰化師範大學地理學系碩士論文,2003年。
雷昉、鹿化煜、魏海珍、蒋少涌、弋双文、孙雪峰,黄土高原南部黄土-古土壤酸溶相硼同位素组成(δ11B)及其對季風將水變化的指示,SCIENTIA SINICA Terrae, 44:1508-1518,2014年。
鄒佩珊,臺灣山區近五百年的氣候變化:樹輪寬度的證據,國立臺灣大學地質科學研究所博士論文,1998年。
趙景波,郝玉芬,岳應利,陝西洛川地區全新世中期土壤與氣候變化,第四季研究,2006年。
蔡呈奇,墾丁萬里得山區極育土之化育作用與地形的關係,國立臺灣大學農業化學研究所碩士論文,1995年。
劉禎祺,臺灣中部亞高山森林地區具黏粒聚積之淋澱化土壤之特性與化育作用,國立臺灣大學農業化學研究所博士論文,2004年。
蕭雅文,大肚台地與新社地區紅土土壤剖面質量平衡之研究,國立彰化師範大學地理學系碩士論文,2007年。
鍾全雄、黃國芳、王博賢、游鎮烽,高精密無機質譜儀在地球科學及海洋科學研究上的應用,臺灣質譜年會暨國際學術交流研討會,2007年。
羅建育,臺灣高山湖泊沈積物之元素分佈與古氣候,國立中山大學海洋地質研究所博士論文,1996年。
羅偉,大禹嶺[臺灣地質圖幅及說明書1/50,000],經濟部中央地質調查所,1993年。
羅偉、楊昭男,霧社[臺灣地質圖幅及說明書1/50,000],經濟部中央地質調查所,2002年。
校內:2022-08-31公開