簡易檢索 / 詳目顯示

研究生: 陳彥廷
Chen, Yen-Ting
論文名稱: ABC堆疊石墨烯在不同費米能階下的庫倫激發性質
Coulomb Excitation in the doped ABC-stacked Graphene
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 43
中文關鍵詞: 石墨烯緊束模型費米能階電漿子
外文關鍵詞: tight-binding model, ABC-stacked graphene, band structure, Plasmon
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2004年科學家首次在實驗室成功的從石墨中分離出石墨烯,並證實它可以單獨存在,且其獨特的能帶以及電學性質在各個領域皆有著非常大的應用前景。而我們感興趣的是在不同的調控之下(例如:外加電場,外加磁場,參雜等),石墨烯內部電子反應所產生的豐富電子性質。
    此篇文章中,我們以緊束模型(Tight Binding Model)來探討單層、AA與ABC堆疊的石墨烯,討論其能帶特色、庫倫激發性質以及不同層間電子的交互作用。在完整分析後,我們調整費米能階的大小,觀察其損失函數(Loss Function)依照不同費米能所產生的變化,探討其產生之電漿子與費米能階的相關性。並討論因AA與ABC能帶結構的不同,進而產生的不同電子激發特性與不同的電漿子特性。

    We use tight-binding model to explore the electric properties of ABC-stacked trilayer graphene. These rich electric properties are greatly related to the interlayer atomic interactions, the Fermi energy and the transferred momentum. The band structures of ABC-stacked trilayer graphene own a pair of partially flat and a pair of sombrero-shaped bands. These special band structures induce rich electric properties with the Coulomb excitation. The sombrero-shaped bands induce the abnormal declining plasmon with a specific range of Fermi energy. Plasmons merge together and behave like monolayer graphene when Fermi energy is sufficiently high.

    Contents Abstract 1. INTRODUCTION---1 2. MATERIALS AND METHODS---3 a. Materials---3 b. Tight Binding Model---5 c. Dielectric Function---7 3. RESULTS AND DISCUSSION---8 a. Band Structure---8 b. Coulomb Excitation---10 c. Plasmon---17 4. CONCLUSION---23 Appendix: programs---24 Reference---43

    Reference:
    [1]P. R. Wallace, J. Phys. 71, 622 (1947)
    [2]J. H. Ho, Y. H. Lai, Y. H. Chiu, and M. F. Lin, Nanotechnology 19, 035712(6) (2008).
    [3]J. H. Ho, C. L. Lu, C. C. Hwang, C. P. Chang, and M. F. Lin, Phys. Rev. B 74, 085406(8) (2006).
    [4]J. H. Ho, Y. H. Lai and M. F. Lin, Bulletin of American Physical Society, Vol. 52 (2007).
    [5]J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Lett. A 352, 446-450 (2006).
    [6]C. W. Chiu, S. H. Lee, S. C. Chen, and M. F. Lin, J. Appl. Phys. 106, 113711(6) (2009).
    [7]C. L. Lu, C. P. Chang, and M. F. Lin, Eur. Phys. J. B 60, 161-169 (2007).
    [8]C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang, and M. F. Lin, J. Phys. Soc. Jpn. 76, 024701(7) (2007).
    [9]K. S. Kim, Y, Zhao, H Jang, S. Y. Lee, J.M. Kim, K.S. Kim, J.-H. P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
    [10]F. Zhang, B Sahu, H. Min, and A. H. MacDonald, Phys. Rev. B 82, 035409 (2010).
    [11]C. W. Chiu, S. H. Lee, F. L. Shyu, and M. F. Lin, New J. Phys. 12, 083060(13) (2010).
    [12]C. L. Lu and M. F. Lin, 3rd Workshop on Low-Dimensional Systems and Nanomaterials (2006, April).
    [13]M. F. Lin, C. S. Huang, and D. S. Chu, Phys. Rev. B 55, 13961-13971 (1997).
    [14]M. F. Lin, and F. L. Shyu, J. Phys. Soc. Jpn. 69, 607-610 (2000).
    [15]M. F. Lin, and F. L. Shyu, Physica B, 117-126 (2000).
    [16]F. L. Shyu and M. F. Lin, J. Phys. Soc. Jpn. 69, 3781-3784 (Letter; 2000).

    無法下載圖示 校內:2022-12-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE