| 研究生: |
鄭捷倫 Cheng, Chieh-Lun |
|---|---|
| 論文名稱: |
纖維素分解酵素菌株之篩選及於生質氫能生產之應用 Isolation of cellulase producing bacteria and its applications in biohydrogen production |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 225 |
| 中文關鍵詞: | 纖維素酵素 、纖維素前處理 、暗醱酵產氫 |
| 外文關鍵詞: | Cellulase, cellulose pretreatment, dark fermentation |
| 相關次數: | 點閱:188 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究自南台灣林地中篩選出能夠分泌纖維水解酵素(cellulases)的菌種,並透過微酵素工程與醱酵工程等角度,來了解其特性、生產方式與應用方式,最後利用系統整合程序將此酵素應用至纖維素生質能源的製備,進而朝向商業發展的可行性與綠能產業的永續發展的目標邁進。本研究首先建立適合篩選纖維水解菌株的方法,並利用所設計的菌株篩選策略,成功地至目標樣本中篩選出12株較具潛力的纖維水解生產菌株,其中Pseudomonas sp. CL3具有相當優異的纖維水解能力,且所生產出的水解酵素種類豐富且活性高,因此本研究選擇該菌種作為主要研究對象。
本研究透過酵素反應活性測試中發現,Pseudomonas sp. CL3 不只能生產纖維水解酶(endo-β-1,4-D-glucanase, exo-β-1,4-D-glucanase, β-1,4-D-glucosidase 和xylanase),也能生產澱粉水解酶(amylase)和果膠水解酶(pectinase)等酵素。由溫度與pH反應性測試中得知,endo-β-1,4-D-glucanase, exo-β-1,4-D-glucanase, β-1,4-D-glucosidase和xylanase 最適反應溫度分別為50, 45, 45 與 55oC,而最適反應的pH值皆為6。由蛋白質活性電泳膠分析技術,確定所使用的酵素分子量大小分別為endo-β-1,4-D-glucanase, 80 KDa and 100 KDa;exo-β-1,4-D-glucanase, 55 KDa; β-1,4-D-glucosidase, 65 KDa 和xylanase, 20 KDa 。本研究也針對酵素的熱穩定度與其他容易影響酵素活性之因子(如金屬離子與界面活性劑)進行相關測試研究。由研究結果可知,所篩選出的纖維水解菌株,其生產的酵素種類為中溫型酵素;適量的鐵與錳離子對其酵素活性具有顯著促進之作用,而添加生物界面活性劑(表面素)也可以提升酵素活性。然而,由於酵素會吸附於醣脂類界面活性劑(如鼠李醣脂)之醣基,而導致水解效能降低。本研究亦建立固定化纖維素水解酶,將該酵素固定在磁性載體上,經測試纖維二醣酶(β-1,4-D-glucosidase)在此固定化系統下,可重複使用5次,其活性仍保有90%以上。
此外,為了嘗試提升Pseudomonas sp. CL3之纖維水解酶產量,以利後續之應用,本研究使用實驗設計法(回應曲面法; response surface methodology)來提高CL3菌株的纖維水解酶產量。先根據二水準變因篩選法,選取與纖維水解酶產量相關性較高的影響因子,再以反應曲面法求得各個重要因子的最佳參數。本研究以24-1二水準因子法篩選可能影響纖維水解酶產量的因子,所檢測的變因包含rice straw, CMC, NH4NO3 and yeast extract等培養基成分的濃度。經過結果分析,rice straw與yeast extract濃度對纖維水解酶產量的影響較大。因此,透過回應曲面法,本研究求得rice straw與yeast extract兩項因子的最佳參數值,分別為1.32% and 0.32%。而利用此最佳生產配方條件,纖維水解酶的產量可以提升至原來的3.7倍。為了進一步提升纖維水解酶的生產效率,本研究以不同醱酵策略來提升纖維水解酶的生產效率。由實驗結果發現,在CSTR系統中,將水力停留時間控制在17小時時,纖維水解酶的濃度可高達3.3 FPU/ml並且達到穩定生產,此時纖維水解酶的總生產速率可提升至194.12 FPU/L/h,此生產速率為原來批次生產的3.4倍。
本研究接著將所生產之纖維水解酶進行對農業纖維素廢棄物之水解測試,結果發現,透過鹼處理程序所得之蔗渣纖維其水解效率為未處理纖維之3.2倍。再者,由纖維水解動力學研究發現,所生產之Pseudomonas sp. CL3纖維水解酶,其纖維水解動力學非常符合Michaelis-Menten模式,並藉由此模式求得其動力學參數為Vmax= 0.133 g/L/h、Km=7.4 g/L,此結果顯示在蔗渣纖維濃度為14.8 g/L時,其最大葡萄糖產生速率為0.133 g/L/h。為了更進一步了解Pseudomonas sp. CL3纖維水解酶與蔗渣纖維處理量對葡萄糖產率的影響,本研究藉由不同濃度的纖維水解酶與蔗渣負載量進行實驗設計。結果發現,在纖維水解酶濃度為9 FPU/ml時,並且所添加之蔗渣纖維濃度介於50至70 g/L時,此時最大葡萄糖產率可高達0.55 g/L/h。而Pseudomonas sp. CL3纖維水解酶不僅對農業廢棄纖維(二代生質料源)能夠有效水解糖化,還能夠應用至微藻料源(三代生質料源)的水解糖化,經研究證實,其葡萄糖產率可高達0.13 g/L/h,且轉化率可高達90% 以上。
本研究亦利用所開發出的纖維水解酵素搭配進行生質氫能之生產,主要透過批次實驗的同步糖化醱酵(SSF)與兩階段分步糖化醱酵(SHF)進行測試。由研究結果可知,在低糖量基質之產氫醱酵系統中,其氫氣生產速率與氫氣濃度都會偏低,故未來纖維氫氣生產系統應以兩階段分步糖化醱酵(SHF)較為可行。本研究接著利用稻稈水解液進行連續醱酵產氫,在水利停留時間為12小時的條件下,其氫氣生產速率326.7 ml/L/h,氫氣濃度為56.5%,由此可知,本研究所開發出的纖維水解酵素能夠有效結合暗醱酵產氫系統,進行纖維氫氣的生產。
最後,本研究進一步利用所開發最佳的酵素生產與水解糖化程序,結合暗醱酵產氫與微藻固碳系統,進一步針對纖維氫能最佳生產程序及整合低碳排放系統之評估,以達成高效綠色能源生產與永續經營之目標。
In this study, an effective cellulase-producing strain was isolated from forest soil in southern Taiwan using the approaches associated with microbiology, enzyme engineering and fermentation engineering. The enzymes produced were used for the development of sustainable and commercially feasible bioenergy producing processes. Twelve strains were first isolated from the environmental samples. Among them, Pseudomonas sp. CL3 was found to secrete a number of highly active hydrolytic enzymes the best activity, so was selected as the target strain for further studies.
The isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-D-glucanase (80 and 100 KDa), exo-β-1,4-D-glucanase (55 KDa), β-1,4-D-glucosidase (65 KDa) and xylanase (hemicellulase) with a molecular weight of 20 KDa characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced amylase and pectinase. The optimal temperature for enzyme activity was 50, 45, 45 and 55oC for endo-β-1,4-D-glucanase, exo-β-1,4-D-glucanase, β-1,4-D-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0.
In addition, the effect of reaction temperature and environmental factors (metal ions and surfactant) on the activity of the cellulolytic enzymes originating from Pseudomonas sp. CL3 was intensively studied. It was found that the cellulases produced by Pseudomonas sp. CL3 belong to mesophilc enzymes. The metal ions (Mn2+ and Fe2+) were also significant factors affecting the cellulase activity. Addition of biosurfactant (e.g., surfactin) can enhance the cellulase activity. However, for glycolipid-type biosurfactant (e.g., rhamnolipid), since the cellulases will bind to the sugar structure of the biosurfactant, the addition of rhamnolipid led to a decrease in the hydrolytic activity. The cellulases produced by strain CL3 were also immobilized on the magnetic particles. These results indicate that the β-glucosidase activity of the immobilized enzyme had extremely high stability, and could maintain 90% of its original activity even when the immobilized enzyme particles were reused for 5 cycles.
To further enhance the production of cellulases from the CL3 strain, statistical experimental design methodology was applied to optimize the culture medium composition favoring enzyme synthesis. Four key parameters (CMC, rice straw, NH4NO3, yeast extract) were selected by two-level factorial design. Response surface methodology was then used to identify the optimal composition of the selected parameters, giving an optimal concentration of 1.32% and 0.32% for rice straw and yeast extract, respectively. With this optimal medium, the cellulolytic enzymes production could be markedly elevated to a maximum concentration of 3.8 FPU/ml, which is 3.7 times compared with original medium.
In order to develop efficient and cost-effective process for producing cellulases from CL3 strain, different fermentation strategies were examined. In the CSTR fermentation process, the cellulase titer in the fermentor could be maintained at around 3.3 FPU/ml at a HRT of 17 h with a cellulase productivity of 194.12 FPU/L/h, which is 3.4 times higher than that obtained from the batch system.
Nest, the cellulases produced from CL3 strain was used to perform hydrolysis process for the saccharification of lignocellulosic materials (such as sugarcane bagasse and rice straw). The effects of pretreatment process (chemical and physical method) on the enzymatic hydrolysis were investigated. The alkaline pretreatment seems to be the most effective method able to achieve the highest monosaccharide yield from bagasse through enzymatic saccharification, which is 3.2 times compared with non- pretreated bagasse. Kinetic analysis shows that the dependence of cellulase activity on cellulose substrate can be described by Michaelis-Menten model with good agreement. The estimated kinetic constants for cellulases obtained from CL3 strain were Vmax= 0.133 g/L/h and Km=7.4 g/L, respectively (with an enzyme loading of 4.5 FPU/ml). That is, the maximum glucose productivity from the enzymatic hydrolysis was 0.133 g/L/h at a bagasse loading of 14.8 g/L. The cellulose hydrolysis experiments were also conducted under different concentrations of alkaline-pretreated bagasse. Under different bagasse loadings (50 to 70 g/L), a cellulase dosage of higher than 9 FPU/ml can obtain a great glucose productivity of around 0.55 g/L/h. Moreover, our study also shows that the enzyme from Pseudomonas sp. CL3 can also hydrolyze microalgal biomass (e.g., Chlorella vulgaris), giving a glucose productivity of 0.13 g/L/h, and the yield of around 90%.
The cellulases were also applied in producing biohydrogen from cellulosic feedstock. In the cellulosic hydrogen production process, the experiments were divided into two groups, namely separate hydrolysis and fermentation (SHF) process and simultaneous saccharification and fermentation (SSF) process using alkaline pretreated sugarcane bagasse. It was found that lower H2 content and productivity were obtained when the glucose concentration in the fermentation medium was at a lower level (under 4 g/L). Therefore, the SHF process seems to be more suitable for the biohydrogen production from the pretreated bagasse due to the requirement of high glucose concentration in the medium. Therefore, we used the bagasse hydrolysate to produce hydrogen with Clostridium pasteurianum CH4 using CSTR operations at a HRT of 12 h. Under this condition, the H2 content in the biogas was around 56.5% and the maximum H2 production rate was 326.7 ml/L/h. These results show that the cellulases produced form a newly isolated indigenous bacterium Pseudomonas sp. CL3 were able to combine with dark H2 fermentation system to produce cellulosic hydrogen. Finally, we combine the cellulases production strategy, optimal hydrolysis process, dark H2 fermentation, and microalgae-CO2 capture system to develop a sustainable and low-carbon-emission biohydrogen producing system.
Adsul, M.G., Ghule, J.E., Singh, R., Shaikh, H., Bastawde, K.B., Gokhale, D.V., Varma, A.J. (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydr Polym. 57, 62-72.
Adsul, M.G., Terwadkar, A.P., Varma, A.J., Gokhale, D.V. (2009) Cellulases from Penicillium janthinellum Mutants: solid-State production and their stability in ionic liquids. Bioresour. 4(4), 1670-1681.
Agnihotri, S., Dutt, D., Tyagi, C.H., Kumar, A., Upadhyaya, J.S. (2010) Production and biochemical characterization of a novel cellulase-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC 1165. World J. Microbiol. Biotechnol. 26, 1349-1359.
Akdeniz F., Caglar A., Gullu D. (2002) Recent energy investigations on fossil and alternative nonfossil resources in Turkey. Energy Conv. Manag. 43, 575-589.
Alinia, R., Zabihi, S., Esmaeilzadeh, F., Kalajahi, J.F. (2010) Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. Biosyst. Eng. 107, 61-66.
Amouri B., Gargouri A. (2006) Characterization of novel β-glucosidase from a Stachybotrys strain. Biochem. Eng. J. 32, 191-197.
Anbarasan, S., Janis, J., Paloheimo, M., Laitaoja, M., Vuolanto, M., Karimaki, J., Vainiotalo, P., Leisola, M., Turunen, O. (2010) Effect of glycosylation and additional domains on the thermostability of a family 10 xylanase produced by Thermopolyspora flexuosa. Appl. Environ. Microbiol. 76(1), 356-360.
Antonopoulou, G., Gavala, H.N., Skiadas, I.V., Lyberatos, G. (2010) Influence of pH on fermentative hydrogen production from sweet sorghum extract. Int. J. Hydrogen Energy 35,1921-1928.
Argun, H., Kargi, F. (2010) Effects of light source, intensity and lighting regime on bio-hydrogen production from ground wheat starch by combined dark and photo-fermentations. Int. J. Hydrogen Energy 35, 1604-1612.
Asada, Y., Miyake, J. (1999) Photobiological hydrogen production. J. Biosci. Bioeng. 88 (1), 1-6.
Atabani A.E., Silitonga A.S., Badruddin I. A., Mahlia T.M.I., Masjuki H.H., Mekhilef S. (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sust. Energ. Rev. 16, 2070-2093.
Bak, J.S., Kim, M.D., Choi, I.G., Kim, K.H. (2010) Biological pretreatment of rice straw by fermenting with Dichomitus squalens. New Biotechnol. 27(4), 424-434.
Bak, J.S., Ko, J.K., Han, Y.H., Lee, B.C., Choi, I.G., Kim, K.H. (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour. Technol. 100, 1285-1290.
Ballesteros, I., Oliva, J.M., Navarro, A.A., Gonzalez, A., Carrasco, J., Ballesteros, M. (2000) Effect of chip size on steam explosion pretreatment of softwood. Appl. Biochem. Biotechnol. 84-86, 97-110.
Bals, B., Dale, B., Balan, V. (2006) Enzymatic hydrolysis of distiller's dry grain and solubles (DDGS) using ammonia fiber expansion pretreatment. Energ. Fuel. 20, 2732-2736.
Beer, L.L., Boyd, E.S., Peters, J.W., Posewitz, M.C. (2009) Engineering algae for biohydrogen and biofuel production. Curr. Opin. Biotechnol. 20, 264-271.
Bielen, A.A.M., Willquist, K., Engman, J., van der Oost, J., van Niel, E.W.J., Kengen, S.W.M. (2010) Pyrophosphate as a central energy carrier in the hydrogen producing extremely thermophilic Caldicellulosiruptor saccharolyticus. Fems Microbiol. Lett. 307, 48–54.
Brentner, L.B., Peccia, J., Zimmerman, J.B. (2010) Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda. Environ. Sci. Technol. 44, 2243–2254.
Calusinska, M., Happe, T., Joris, B., Wilmotte, A. (2010) The surprising diversity of clostridial hydrogenases:a comparative genomic perspective. Microbiol.156, 1575-1588.
Cao, G.L., Ren, N.Q., Wang, A.J., Lee, D.J., Guo, W.Q., Liu, B.F., Feng, Y.J., Zhao, Q.L. (2009) Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrogen Energy 34, 7182-7188.
Cara, C., Moya, M., Ballesteros, I., Negro, M.J., Gonzalez, A., Ruiz, E. (2007a) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem. 42, 1003-1009.
Cara, C., Romero, I., Oliva, J.M., Saez, F., Castro, E. (2007b) Liquid hot water pretreatment of olive tree pruning residues. Appl. Biochem. Biotechnol. 137, 379-394.
Chandra, R. P., Bura, R., Mabee, W. E., Berlin, A., Pan, X., Saddler, J. N. (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics?, Adv. Biochem. Eng.Biotechnol. 108, 67-93.
Chang, J.S., Lee, K.S., Lin, P.J. (2002) Biohydrogen production with fixed-bed bioreactor. Int. J. Hydrogen Energy. 27, 1167-1174.
Chen, M., Zhao, J., Xia, L. (2008) Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr. Polym., 71, 411-415.
Chen, S.D., Sheu, D.S., Chen, W.M., Lo, Y.C., Huang, T.Y., Lin, C.Y., Chang, J.S. (2007) Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonas taiwanensis On1. Biotechnol. Prog. 23, 1312-1320.
Chen, W.M., Tseng, Z.J., Lee, K.S., Chang, J.S. (2005) Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobicsewage sludge. Int. J. Hydrogen Energy. 30, 1063-1070.
Chong, M.L, Sabaratnam, V., Shirai, Y., Hassan, M.A. (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int. J. Hydrogen Energy. 34, 3277-3287.
Collins, T., Gerday, C., Feller, G. (2005) Xylanases, xylanase families and extremophilic xylanases. Fems Microbiol. Rev. 29, 3-23.
Cui, M.J., Yuan, Z.L., Zhi, X.H., Shen, J.Q., 2009. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria. Int. J. Hydrogen Energy 34, 7971-7978.
Cui, M.J., Yuan, Z.L., Zhi, X.H., Wei, L.L., Shen, J.Q. (2010) Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. Int. J. Hydrogen Energy 35, 4041-4047.
Das, D., Veziroğlu, T. N. (2001) Hydrogen production by biological processes: a sruvey of literature. Int. J. Hydrogen Energy 26, 13-28.
Datar, R., Huang, J., Maness, P.C., Mohagheghi, A., Czemik, S., Chornet, E. (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrogen Energy 32, 932 – 939.
Demain, A.L., Newcomb, M., Wu, J.H.D. (2005) Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69, 124-154.
Demirbas, A. (2010) Hydrogen from Mosses and Algae via Pyrolysis and Steam Gasification. Energy Sources, Part A 32(2), 172-179.
EIA (Energy Information Administration). (2012) Official Energy Statistics of the Department of Energy, USA. (http://www.eia.doe.gov/)
Emtiazi, G., Nahvi, I. (2000) Multi-enzyme production by Cellulomonas sp. grown on wheat straw. Biomass Bioenerg. 19:31-37.
Fan, L.T., Gharpuray, M.M., and Lee, Y.H. (1987) Cellulose Hydrolysis, 3 (Springer-Verlag, Berlin, Germany) 1-68.
Fan, Y.T., Zhang, Y.H., Zhang, S.F., Hou, H.W., Ren, B.Z. (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour. Technol. 97, 500-505.
Fascetti, E., D'Addario, E., Todini, O., Robertiello, A. (1998) Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. Int. J. Hydrogen Energy. 23(9) 753-760.
Fu, C.C., Hung, T.C., Chen, J.Y., Su, C.H., Wu, W.T. (2010) Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresour. Technol. 101, 8750–8754
Fukuoka, A., Dhepe, P.L. (2006) Catalytic conversion of cellulose into sugar alcohols. Angew. Chem. Int. Ed. 45, 5161-5163.
Furcht, P.W., Silla, H. (1990) Comparison of simultaneous wet milling and enzymatic hydrolysis of cellulose in ball mill and attrition mill reactors. Biotechnol. Bioeng. 35, 630-645.
Gao, M.A., Xu, F., Li, S.R., Ji, X.C., Chen, S.F., Zhang, D.Q. (2010) Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosyst. Eng. 106, 470-475.
Garcia-Cubero, M.T., Gonzalez-Benito, G., Indacoechea, I., Coca, M., Bolado, S. (2009) Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresour. Technol. 100, 1608-1613.
Ghose, T. K. (1987) Measurement of cellulase activities, Pure and Applied Chemistry. 59, 257-268.
Goldemberg, J. (2007) Ethanol for a sustainable energy future. Science 315 (5813), 808-810.
Goldemberg, J., Johansson, T.B. (2004) World Energy Assessment: Overview, 2004 Update, United Nations Development Programme, United Nations Department of Economic and Social Affairs, and World Energy Council, New York, 85.
Gong, C.S., Cao, N.U., Du, J., and Tsao, G.T. (1999) Ethanol production by renewable sources. Adv. Biochem. Eng. Biotechnol. 65, 207-241.
Gong, G.F., Liu, D.Y., Huang, Y.D. (2010) Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosyst. Eng. 107, 67-73.
Gregory, M.B. (2006) Process econmic considerations for production of ethanol form biomass feedstocks. Ind. Biotechnol. 2, 14-21.
Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K., Chauhan, B. (2003) Microbial -amylases: a biotechnological perspective. Process Biochem. 38, 1599-1616.
Gupta, R., Lee, Y.Y. (2010) Pretreatment of corn stover and hybrid poplar by sodium hydroxide and hydrogen peroxide. Biotechnol. Prog. 26(4), 1180-1186.
Ha, S.H., Lan, M.N., Lee, S.H., Hwang, S.M., Koo, Y.M. (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb. Technol. 41(4), 480-483.
Hallenbeck, P.C., Benemann, J.R. (2002) Biological hydrogen production: fundamentals and limiting processes. Int. J. Hydrogen Energy 27 (11-12), 1185-1193.
Hallenbeck, P.C., Ghosh D. (2009) Advances in fermentative biohydrogen production: the way forward?. Trends Biotechnol. 27(5), 287-297.
Hallenbeck, P.C., Ghosh, D., Skonieczny, M.T., Yargeau, V. (2009) Microbiological and engineering aspects of biohydrogen production. Ind. J. Microbiol. 49, 48–59.
Harun, R., Danquah, M.K., Forde, G.M. (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J. Chem. Technol. Biotechnol. 85, 199-203.
He, X., Miao, Y.L., Jiang, X.J., Xu, Z.D., Ouyang, P.K. (2010) Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment. Appl. Biochem. Biotechnol. 160, 2449-2457.
Herbel, Z., Rakhely, G., Bagi, Z., Ivanova, G., Acs, N., Kovacs, E., Kovacs, K.L. (2010) Exploitation of the extremely thermophilic Caldicellulosiruptor saccharolyticus in hydrogen and biogas production from biomasses. Environ. Technol. 31(8-9), 1017–1024.
Hou, A.Q., Wang, X.J., Wu, L.H. (2008) Effect of microwave irradiation on the physical properties and morphological structures of cotton cellulose. Carbohydr. Polym. 74, 934-937.
Huang, Y.F., Kuan, W.H., Lo, S.L., Lin, C.F. (2010) Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Bioresour. Technol. 101, 1968-1973.
Inoue, H., Yano, S., Endo, T., Sakaki, T., Sawayama, S. (2008) Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus. Biotechnol. Biofuel. 1(2), 1-9.
Jacob, N., Niladevi, K.N., Anisha, G.S., Prema, P. (2008) Hydrolysis of pectin: An enzymatic approach and its application in banana fiber processing. Microbiol. Res. 163, 538-544.
Jeya, M., Nguyen, N.P.T., Moon, H.J., Kim, S.H., Lee, J.K. (2010) Conversion of woody biomass into fermentable sugars by cellulase from Agaricus arvensis. Bioresour. Technol. 101, 8742-8749.
Jeya, M., Zhang, Y.W., Kim, I.W., Lee, J.K. (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour. Technol. 100, 5155-5161.
Joo, A.R., Jeya, M., Lee, K.M., Sim, W.I., Kim, J.S., Kim, I.W., Kim, Y.S., Oh, D.K., Gunasekaran, P., Lee, J.K. (2009) Purification and characterization of a β-1,4-glucosidase from a newly isolated strain of Fomitopsis pinicola. Appl. Microbiol. Biotechnol. 83, 285-294.
Jørgensen, H., Kristensen, J. B., Felby, C. (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities, Biofuels Bioprod. Biorefining 1, 119-134.
Kanai, T., Imanaka, H., Nakajima, A., Uwamori, K., Omori, Y., Fukui, T., Atomi, H., Imanaka, T. (2005) Continuous hydrogen production by the hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1. J. Biotechnol. 116, 271-282.
Kapdan, L.K., Kargi, F. (2006) Biohydrogen production from waste materials. Enzyme Microb. Technol. 38, 569-582.
Karadag, D., Makinen, A.E., Efimova, E., Puhakka, J.A. (2009) Thermophilic biohydrogen production by an anaerobic heat treated-hot spring culture. Bioresour. Technol. 100, 5790–5795.
Kargi, F., Ozmihci, S. (2010) Effects of dark/light bacteria ratio on bio-hydrogen production by combined fed-batch fermentation of ground wheat starch. Biomass Bioenerg.34, 869-874.
Kataoka, N., Miya, A., Kiriyama, K. (1997) Studies on hydrogen production by continuous culture system of hydrogenproducing anaerobic bacteria. Water Sci. Technol. 36(6–7), 41-47.
Keller, F.A., Hamilton, J.E., Nguyen, Q.A. (2003) Microbial pretreatment of biomass - Potential for reducing severity of thermochemical biomass pretreatment. Appl. Biochem. Biotechnol. 105, 27-41.
Khucharoenphaisan, K., Tokuyama S.,Kitpreechavanich, V. (2010) Purification and characterization of a high-thermostable β-xylanase from newly isolated Thermomyces lanuginosus THKU-49. Mycosci. 51,405-410.
Kim, J.K., Nhat, L., Chun, Y.N., Kim, S.W. (2008) Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. Biotechnol. Bioproc. Eng. 13, 499-504.
Kim, J.S., Lee, Y.Y., Torget, R.W. (2001) Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. Appl. Biochem. Biotechnol. 91-93, 331-340.
Kim, K.H., Hong, J. (2001) Supercritical CO2 pretreatment of lignocellulose enhances enzymatic cellulose hydrolysis. Bioresour. Technol. 77, 139-144.
Kim, S., Dale, B.E.(2004) Global potential bioethanol production from wasted crops and crop residules. Biomass Bioenerg. 26, 361-375.
Koh, L.P., Ghazoul J. (2008) Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biol. Conserv. 141, 2450-2460.
Kongjan, P., Angelidaki, I. (2010) Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresour. Technol. 101, 7789-7796.
Kuhad, R.C., Singh, A., and Eriksson, K.E. (1997) Microorganisms enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 57,45-125.
Kumakura, M. (1997) Preparation of immobilized cellulase beads and their application to hydrolysis of cellulosic materials. Process Biochem. 32, 555-559.
Kumar, P., Barrett, D. M., Delwiche, M. J., Stroeve, P. (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuels production, Ind. Eng. Chem. Res. 48, 3713-3729.
Lee, C.M., Chen, P.C., Wang, C.C., Tung, Y.C. (2002) Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor e'uent. Int. J. Hydrogen Energy. 27, 1309 – 1313.
Lee, J.H., Lee, D.G., Park, J.I., Kim, J.Y. (2010) Bio-hydrogen production from a marine brown algae and its bacterial diversity. Korean J. Chem. Eng. 27(1), 187-192.
Lee, K.S., Hsu, Y.F., Lo, Y.C., Lin, P.J., Lin, C.Y., Chang, J.S. (2008) Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. Int. J. Hydrogen Energy, 33, 1565-1572.
Lee, K.S., Lin, P.J., Fangchaing, K., Chang, J.S. (2007) Continuous hydrogen production by anaerobic mixed microflora using a hollow-fiber microfiltration membrane bioreactor. Int. J. Hydrogen Energy, 32, 950-957.
Lee, K.S., Lo, Y.S., Lo, Y.C., Lin, P.J., Chang, J.S. (2003) H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol. Lett. 25, 133-138.
Lee, K.S., Wu J.F., Lo, Y.S., Lo Y.C., Lin, P.J., Chang, J. S. (2004) Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol. Bioeng. 87, 648-657.
Levin, D.B., Carere, C.R., Cicek, N., Sparling, R. (2009) Challenges for biohydrogen production via direct lignocellulose fermentation. Int. J. Hydrogen Energy 34, 7390-7403.
Levin, D.B., Carere, C.R., Cicek, N., Sparling, R. (2009) Challenges for biohydrogen production via direct lignocellulose fermentation. Int. J. Hydrogen Energy 34, 7390-7403.
Levin, D.B., Pitt, L., Love, M. (2004) Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29 (2), 173-185.
Li, C., Zhao, Z.K. (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv. Synth. Catal. 349(11-12), 1847-1850.
Li, D.M., Chen, H.Z. (2007) Biological hydrogen production from steam-exploded straw by simultaneous saccharification and fermentation. Int. J. Hydrogen Energy 32, 1742-1748.
Li, L., Lin, Z.B., Yang, X., Wan, Z.Z., Cui, S.X. (2009a) A novel cellulose hydrogel prepared from its ionic liquid solution. Chin. Sci. Bull. 54(9), 1622-1625.
Li, X.T., She, Y.L., Sun, B.G., Song, H.L., Zhu, Y.P., Lv, Y.G., Song, H.X. (2010) Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochem. Eng. J. 52, 71-78.
Li, Y., Yin, Q., Ding, M., Zhao, F. (2009b) Purification, characterization and molecular cloning of a novel endo-β-1,4-glucanase AC-EG65 from the mollusc Ampullaria crossean. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 153, 149-156.
Liang,Y., Yesuf, J., Schmitt, S., Bender, K., Bozzola, J. (2009) Study of cellulases from a newly isolated thermophilic and cellulolytic Brevibacillus sp. strain JXL. J. Ind. Microbiol. Biotechnol. 36, 961-970.
Lin, C.Y., Chang, R.C. (1999) Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol. 74(6), 498-500.
Lin, Z.X., Huang, H., Zhang, H.M., Zhang, L., Yan, L.S., Chen, J.W. (2010) Ball Milling Pretreatment of Corn Stover for Enhancing the Efficiency of Enzymatic Hydrolysis. Appl. Biochem. Biotechnol. 162, 1872-1880.
Liu, B.F., Ren, N.Q., Xie, G.J., Ding, J., Guo, W.Q., Xing, D.F. (2010) Enhanced bio-hydrogen production by the combination of dark- and photo-fermentation in batch culture. Bioresour. Technol. 101, 5325-5329.
Liu, C.Z., Cheng, X.Y. (2010) Improved hydrogen production via thermophilic fermentation of corn stover by microwave-assisted acid pretreatment. Int. J. Hydrogen Energy 35, 8945-8952.
Liu, L., Chen, H. (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM]Cl. Chin. Sci. Bull. 51(20), 2432-2436.
Liu, X.M., Ren, N.Q., Song, F.N., Yang, C.P., Wang, A.J. (2008a) Recent advances in fermentative biohydrogen production. Prog. Nat. Sci. 18, 253-258.
Liu, Y., Yu, P., Song, X., Qu, Y. (2008b) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int. J. Hydrogen Energy 33, 2927-2933.
Lo, Y.C. (2010) Developing high-yield and CO2-free cellulosic biohydrogen production system via integration of dark-photo fermentation and microalgae photoautotrophic processes. Ph.D. Thesis.
Lo, Y.C., Bai, M.D., Chen, W.M., Chang, J.S. (2008) Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour. Technol. 99, 8299-8303.
Lo, Y.C., Chen, C.Y., Lee, C.M., Chang, J.S. (2010a) Combining dark-photo fermentation and microalgae photosynthetic processes for high-yield and CO2-free biohydrogen production. Int. J. Hydrogen Energy. 35, 10944-10953.
Lo, Y.C., Chen, W.M., Hung, C.H., Chen, S.D., Chang, J.S. (2007) Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Water Res. 42, 827-847.
Lo, Y.C., Lee, K.S., Lin, P.J., Chang, J.S. (2009) Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation. Bioresour. Technol., 100, 4381-4387.
Lo, Y.C., Lu, W.C., Chen, C.Y., Chang, J.S. (2010b) Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour. Technol. 101, 5885-5891.
Luo, G., Xie, L., Zou, Z.H., Zhou, Q., Wang, J.Y. (2010) Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH. Appl. Energy 87, 3710-3717.
Ma, H., Liu, W.W., Chen, X., Wu, YJ., Yu, Z.L. (2009) Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresour. Technol. 100, 1279-1284.
Magnusson, L., Islam, R., Sparling, R., Levin, D., Cicek, N. (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int. J. Hydrogen Energy 33, 5398-5403.
Maki M., Leung K.T., Qin W. (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5(5):500-516.
Mars, A.E., Veuskens, T., Budde, M.A.W., van Doeveren, P.F.N.M., Lips, S.J., Bakker, R.R., de Vrije, T., Claassen, P.A.M. (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int. J. Hydrogen Energy 35, 7730-7737.
McMillan, J. D. (1994) Pretreatment of lignocellulosic biomass. In Enzymatic ConVersion of Biomass for Fuels Production; Himmel, M. E., Baker, J. O., Overend, R. P., Eds.; American Chemical Society: Washington, DC, 292-324.
Melis, A., Happe, T. (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol. 127, 740–748.
Miller, G. L. (1959) Use of dinitrosaiicyiic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428.
Miyake, J. (1998) The science of biohydrogen: An energetic view. In. BioHydrogen. Zaborsky, OR Ed., Plenum Press: New York, 7-18.
Miyake, J., Miyake, M., Asada, Y. (1999) Biotechnological hydrogen production: research for efficient light energy conversion. J. Biotechnol. 70, 89-101.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673-686.
Mosier, N.S., Hendrickson, R., Brewer, M., Ho, N., Sedlak, M., Dreshel, R., Welch, G., Dien, B.S., Aden, A., Ladisch, M.R. (2005) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl. Biochem. Biotechnol. 125(2), 77-97.
Moxley, G., Zhang, Y.-H. P. (2007) More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification, Energy Fuels 21, 3684-3688.
Moxley, G., Zhu, Z., Percival Zhang, Y. H. (2008) Efficient sugar release by the cellulose solvent-based lignocellulose fractionation technology and enzymatic cellulose hydrolysis. J. Agric. Food Chem. 56, 7885-7890.
Mueller, H.W., Troesch, W. (1986) Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production. Appl. Microbiol. Biotechnol. 24, 180-185.
Negro, M.J., Manzanares, P., Ballesteros, I., Oliva, J.M., Cabanas, A., Ballesteros, M. (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl. Biochem. Biotechnol. 105, 87-100.
Negro, M.J., Manzanares, P., Oliva, J.M., Ballesteros, I., Ballesteros, M. (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenerg. 25, 301-308.
Nguyen, T.A.D., Kim, J.P., Kim, M.S., Oh, Y.K., Sim, S.J. (2008) Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. Int. J. Hydrogen Energy 33, 1483-1488.
Nitisinprasert, S., Temmes, A. (1991) The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CM126 isolated from municipal sewage sludge. J. Appl. Bacteriol. 71, 154-161.
Noike, T. (2002) Biological hydrogen production of organic wastes-development of the two-phase hydrogen production process. Int. Symposium on Hydrogen and Methane Fermentation of Organic Waste, Tokyo, 31–39.
Nowak, J., Florek, M., Kwiatek, W., Lekki, J., Chevallier, P., Zieba, E. (2005) Composite structure of wood cells in petrified wood. Mater. Sci. Eng. 25,119-130.
NREL (1996) Measurement of cellulase activities, Technical Report, USA.
NREL (2008) Determination of structural carbohydrates and lignin in biomass, Technical Report, USA.
Okuda, K., Oka, K., Onda, A., Kajiyoshi, K., Hiraoka, M., Yanagisawa, K. (2008) Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J. Chem. Technol. Biotechnol. 83, 836-841.
Onda, A., Ochi, T., Yanagisawa, K. (2008) Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 10(10), 1033-1037.
Orozco, A., Ahmad, M., Rooney, D., Walker, G. (2007) Dilute acid hydrolysis of cellulose and cellulosic bio-waste using a microwave reactor system. Process Saf. Environ. Protect. 85(B5), 446-449.
Orts, W.J., Holtman, K.M., Seiber, J.N. (2008) Agricultural Chemistry and Bioenergy. J Agric Food Chem. 56, 3892-3899.
Panagiotopoulos, I.A., Bakker, R.R., de Vrije, T., Koukios, E.G., Claassen, P.A.M. (2010) Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int. J. Hydrogen Energy 35, 7738-7747.
Pandey R. K., Rehman A., Sarviya R.M. (2012) Impact of alternative fuel properties on fuel spray behavior and atomization. Renew. Sust. Energ. Rev. 16, 1762-1778.
Park, J.I., Lee, J., Sim, S.J., Lee, J.H. (2009) Production of hydrogen from marine macro-algae biomass using anaerobic sewage sludge microflora. Biotechnol. Bioproc. Eng. 14, 307-315.
Pattra, S., Sangyoka, S., Boonmee, M., Reungsang, A. (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int. J. Hydrogen Energy 33, 5256-5265.
Philippidis, G. P., Smith, T. K. (1995) Limiting factors in the simultaneous saccharification and fermentation process for conversion of cellulosic biomass to fuel ethanol. Appl. Biochem. Biotechnol. 51, 117-124.
Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G.,Cairney, J., Eckert, C.A., Frederick, W.J.J.R., Hallett, J.P., Leak, D.J., Liotta, C.L. (2006) The path forward for biofuels and biomaterials. Sci. 311,484-489.
Rajoka, I.M., and Malik, A.K. (1997) Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Biores. Technol. 59, 21-27.
Ren, N.Q., Xu, J.F., Gao, L.F., Xin, L., Qiu, J., Su, D.X. (2010) Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int. J. Hydrogen Energy. 35, 2742-2746.
Rosen, M.A., Scott, D.S. (1998) Comparative efficiency assessments for a range of hydrogen production processes. Int. J. Hydrogen Energy 23, 653-659.
Ruane J., Sonnino A., Agostini A. (2010) Bioenergy and the potential contribution of agricultural biotechnologies in developing countries. Biomass Bioenerg. 34, 1427-1439.
Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V. (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40, 3693-3700.
Sakamoto, K., Toyohara, H. (2009) Molecular cloning of glycoside hydrolase family 45 cellulase genes from brackish water clam Corbicula japonica. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 152, 390-396.
Saratale, G.D., Chen, S.D., Lo, Y.C., Saratale, R.G., Chang, J.S. (2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation-a review. J. Sci. Ind. Res. 67, 962-979.
Schubert, C. (2006) Can biofuels finally take center stage?, Nat. Biotechnol. 24, 777-784.
Selig, M.J., Vinzant, T.B., Himmel, M.E., Decker, S.R. (2009) The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl. Biochem. Biotechnol. 155, 397-406.
Sheldon, R.A., Lau, R.M., Sorgedrager, M.J., van Rantwijk, F., Sddon, K.R. (2002) Biocatalysis in ionic liquids. Green Chem. 4(2), 147-151.
Shi, J., Sharma-Shivappa, R.R., Chinn, M., Howell, N. (2009) Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass Bioenerg. 33,88-96.
Shi, X.X., Song, H.C., Wang, C.R., Tang, R.S., Huang, Z.X., Gao, T.R., Xie, J. (2010) Enhanced bio-hydrogen production from sweet sorghum stalk with alkalization pretreatment by mixed anaerobic cultures. Int. J. Energy Res 34, 662-672.
Shimada, N., Kawamoto, H., Saka, S. (2007) Solid-state hydrolysis of cellulose and methyl alpha- and beta-D-glucopyrano sides in presence of magnesium chloride. Carbohydr. Res. 342, 1373-1377.
Shimizu, K.I., Furukawa, H., Kobayashi, N., Itayab Y., Satsumaa A. (2009) Effects of Brønsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose. Green Chem. 11, 1627-1632.
Shin, S.J., Sung, Y.J. (2008) Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiat. Phys. Chem. 77, 1034-1038.
Singh, A., and Hayashi, K. (1995) Microbial cellulase, protein architecture, molecular properties and biosynthesis. Adv. Appl. Microbiol. 40, 1-44.
Singh, J., Cu, S. (2010) Commercialization potential of microalgae for biofuels production. Renew. Sust. Energ. Rev. 14, 2596-2610.
Sivers, M.V., Zacchi, G. (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour. Technol. 51, 43-52.
Sobral Teixeira, R.S., Siqueira, F.G., de Souza, M.V., Ferreira Filho, E.X., da Silva Bon, E.P. (2010) Purification and characterization studies of a thermostable beta-xylanase from Aspergillus awamori. J. Ind. Microbiol. Biotechnol. 37, 1041-1051.
Soni, R., Nazir, A., Chadha, B.S. (2010) Optimization of cellulase production by a versatile Aspergillus fumigatus fresenius strain (AMA) capable of efficient deinking and enzymatic hydrolysis of Solka floc and bagasse. Ind. Crops Prod. 31, 277-183.
Srebotnjak T., Hardi P. (2011) Prospects for sustainable bioenergy production in selected former communist countries. Ecolog. Indicators. 11, 1009-1019.
Sreenath, H.K., Koegel, R.G., Moldes, A.B., Jeffries, T.W., Straub, R.J. (1999.) Enzymic saccharification of alfalfa fibre after liquid hot water pretreatment. Process Biochem. 35, 33-41.
Stambouli A. B., Traversa E. (2002) Fuel cells, an alternative to standard sources of energy. Renew. Sust. Energ. Rev. 6, 297-306.
Suganuma, S., Nakajima, K ., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., Hara, M. (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J. Am. Chem. Soc. 130(38), 12787-12793.
Sukumaran, R.K., Singhania, R.R., Pandey, A. (2005) Microbial cellulases-Production, applications and challenges. J. Sci. Ind. Res. 64, 832-844.
Sun, Y., Cheng, J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1-11.
Suto, M., Tomita, F. (2001) Induction and catabolite repression mechanisms of cellulase in fungi. J. Biosci. Bioeng. 92(4), 305-311.
Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D. (2002) Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124, 4974.
Taherzadeh, M.J., Karimi, K. (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621-1651.
Takacs, E,, Wojnarovits, L., Borsa, J,, Foldvary, C., Hargittai, P., Zold, O. (1999) Effect of gamma-irradiation on cotton-cellulose. Radiat. Phys. Chem. 55, 663-666.
Takacs, E., Wojnarovits, L., Foldvary, C., Hargittai, P., Borsa, J., Sajo, I. (2000) Effect of combined gamma-irradiation and alkali treatment on cotton-cellulose. Radiat. Phys. Chem. 57, 399-403.
Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., Tanaka, T. (2005) Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. J. Biosci. Bioeng. 100(6), 637-643.
Tanisho, S., Ishiwata, Y. (1995) Continuous hydrogen-production from molasses by fermentation using urethane forms as a support of flocks. Int. J. Hydrogen Energy 20(7), 541-545.
Tucker, M.P., Kim, K.H., Newman, M.M., Nguyen, Q.A. (2003) Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility. Appl. Biochem. Biotechnol. 105, 165-177.
Ueno, Y., Fukui, H., Goto, M. (2007) Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ. Sci. Technol. 41, 1413-1419.
Ustinov, B.B., Gusakov, A.V., Antonov, A.I., Sinitsyn, A.P. (2008) Comparison of properties and mode of action of six secreted xylanases from Chrysosporium lucknowense. Enzyme Microb. Technol. 43, 56-65.
Van de Vyver, S., Peng, L., Geboers, J., Schepers, H., de Clippel, F., Gommes, C.J., Goderis, B., Jacobs, P.A., Sels, B.F. (2010) Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem. 12(9), 1560-1563.
Verhaart, M.R.A., Bielen, A.A.M., van der Oost, J., Stams, A.J.M., Kengen, S.W.M. (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ. Technol. 31(8-9), 993-1003.
Walter, S., Schrempf, H. (1996) Physiological Studies of Cellulase (Avicelase) Synthesis in Streptomyces reticule. Appl. Environ. Microbiol. 62, 1065-1069.
Wan, C.X., Li, Y.L. (2010) Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour. Technol. 101, 6398-6403.
Wang, C.Y., Hsieh, Y.R., Ng, C.C., Chan, H., Lin, H.T., Tzeng, W.S., Shyu, Y.T. (2009) Purification and characterization of a novel halostable cellulase from Salinivibrio sp strain NTU-05. Enzyme Microb. Technol. 44, 373-379.
Wang, C.Y., Hsieh, Y.R., Ng, C.C., Chan, H., Lin, H.T., Tzeng, W.S., Shyu, Y.T. (2009) Purification and characterization of a novel halostable cellulase from Salinivibrio sp. strain NTU-05. Enzyme Microb. Technol. 44, 373-379.
Wang, F., Li, F., Chen, G., Liu, W. (2009) Isolation and characterization of novel cellulase genes from uncultured microorganisms in different environmental niches. Microbiol. Res. 164, 650-657.
Wang, Z.Y., Keshwani, D.R., Redding, A.P., Cheng, J.J. (2010) Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresour. Technol. 101, 3583-3585.
Wijffels, R.H., Barbosa, M.J. (2010) An Outlook on Microalgal Biofuels. Sci. 329(5993), 796-799.
Williams, P.J.L., Laurens, L.M.L. (2010) Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 3, 554-590.
Wu, S.Y., Hung, C.C., Lin, C.N., Chen, H.W., Lee, A.S., Chang, J.S. (2005) Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol. Bioeng. 93, 934-46.
Xia, L.M., Sheng, X.L. (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corncob residues. Bioresour. Technol. 91, 259-262.
Xin, F.X., Geng, A.L. (2010) Horticultural Waste as the Substrate for Cellulase and Hemicellulase Production by Trichoderma reesei Under Solid-State Fermentation. Appl. Biochem. Biotechnol. 162, 295-306.
Xu, C.Y., Ma, F.Y., Zhang, X.Y., Chen, S.L. (2010) Biological pretreatment of corn stover by Irpex lacteus for enzymatic hydrolysis. J. Agric. Food Chem. 58, 10893-10898.
Yamaguchi, D., Kitano, M., Suganuma, S., Nakajima, K., Kato, H., Hara, M. (2009) Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J. Phys. Chem. C 113, 3181-3188.
Yan, Q., Zhao, M., Miao, H., Ruan, W., Song, R. (2010) Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresour. Technol. 101, 4508-4512.
Yang, Z.M., Guo, R.B., Xu, X.H., Fan, X.L., Li, X.P. (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int. J. Hydrogen Energy 35, 9618-9623.
Yeh, A.I., Huang, Y.C., Chen, S.H. (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr. Polym. 79, 192-199.
Yu, J., Zhang, J.B., He, J., Liu, Z.D., Yu, Z.N. (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour. Technol. 100, 903-908.
Zeidan, A.A., van Niel, E.W.J. (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int. J. Hydrogen Energy. 35, 1128–1137.
Zhang, X.Y., Yu, H.B., Huang, H.Y., Liu, Y.X. (2007) Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int. Biodeterior. Biodegrad. 60, 159-164.
Zhang, Y.H.P., and Lynd, L.R. (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. 88, 797-824.
Zhang, Y.H.P., Ding, S.Y., Mielenz, J.R., Cui, J.B., Elander, R.T., Laser, M., Himmel, M.E., McMillan, J.R., Lynd, L.R. (2007) Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97, 214-223.
Zhang, Y.H.P., Himmel, M.E., Mielenz, J.R. (2006) Outlook for cellulase improvement: Screening and selection strategies. Biotechnol. Adv. 24(5), 452-481.
Zhao, H.B., Kwak, J.H., Wang, Y., Franz, J.A., White, J.M., Holladay, J.E. (2006) Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuel. 20(2), 807-811.
Zheng, Y.Z., Lin, H.M., Wen, J.Q., Cao, N.J., Yu, X.Z., Tsao, G.T. (1995) Supercritical carbon-dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol. Lett. 17(8), 845-850.