簡易檢索 / 詳目顯示

研究生: 張傑叡
Chang, Chieh-Jui
論文名稱: 鐵酸鉍-鈦酸鍶-鈮酸鉀鈉介電陶瓷電容之介電及儲能性質研究
Dielectric and energy storage properties of BiFeO3-SrTiO3-(K0.5Na0.5)NbO3 dielectric ceramic capacitor
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 介電材料鐵電性能量儲存鐵酸鉍鈮酸鉀鈉
外文關鍵詞: Dielectric, Ferroelectric, Energy storage, BiFeO3, (K0.5Na0.5)NbO3
相關次數: 點閱:55下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陶瓷介電電容有極高的功率密度(~108 W kg-1 )、極短的放電時間(~1 μs)、很高的溫度穩定性及多次的循環壽命(~105 cycle)的優勢,目前具有前景的應用有離子加速器、雷射武器、電漿系統、油電車等超高功率系統。本實驗的(1-x)(0.3BiFeO3-0.7SrTiO3)-xK0.5Na0.5NbO3(BFO-STO-xKNN, x=00.05)固溶體陶瓷是以固相合成法製備而成,由於BFO、STO及KNN都有各自不同的鐵電行為,希冀能透過固溶這三種鈣鈦礦結構來形成新的鈣鈦礦固溶體並研究其鐵電特性來做儲能性質之研究。對現今的儲能介電陶瓷而言如果想要有好的儲能能力主要致力於提高最大極化量、降低殘餘極化量以及提升介電崩潰電場。從XRD的結果可以發現BFO-STO-xKNN(x=00.05)在1150℃的空氣中燒結兩個小時後,其均為純相立方晶系的鈣鈦礦結構,並藉由Rietveld法精算結構後,發現隨著KNN的加入一開始晶格常數會先變小再變大,先變小的原因是由於少量KNN的加入消除了氧空缺所造成的晶格膨脹,而後來變大的原因是由於KNN中A-site位置的Na+、K+以及B-site位置的Nb5+的離子半徑較固溶體BFOSTO中A-site位置的Bi3+、Sr2+以及B-site位置的Fe3+、Ti4+的離子半徑大,所以摻入過量更大的離子使晶格常數變大。從SEM圖可以發現所製備的陶瓷十分緻密且和阿基米德法所測量的結果(相對密度約在93.4%)呼應。除了觀察晶貌,本實驗亦探討晶粒大小,從結果可以發現x=00.01時晶粒會變大,原因是x=0.005跟x=0.01消除了氧空缺所造成的晶格膨脹應力所以使得晶粒成長更容易,而x=0.010.05晶粒會慢慢變小的原因是摻入過多半徑較大的離子造成晶格扭曲嚴重使晶粒成長越發不易。從介電阻抗分析來看可以發現x=0的介電行為為Maxwell-Wagner (M-W)效應且從阻抗分析所做出的colecole plot來做活化能的擬合可以發現x=0的DC直流導電性是來自晶粒本身有Fe2+及Fe3+的存在造成電子在傳輸過程出現跳躍(hopping)。加入KNN後(i.e. x=0.01)的介電行為為Debye的模型,由於relaxation peak在大於106 Hz的位置且虛部讀值在低頻遠小於x=0的結果,說明了沒有Fe2+及Fe3+之間的電子跳躍,所以DC直流導電性很小。在儲能的應用性方面x=0.01時表現出最好的應用前景,儲能密度(Wrec)可以達到3.20 J/cm3,儲能效率(η)可以達到 88.0%,最大崩潰電場(Eb)可以達到273 kV/cm。除了儲能密度及效率外,本實驗為了考慮其在儲能領域的應用性並將x=0.01的陶瓷電容做疲勞測試、頻率測試及熱穩定性測試。在疲勞測試中使用150 kV/cm電場,經過104次循環過後大極化量從25.84 μC/cm2 下降至25.67 μC/cm2,殘餘極化量從1.95 μC/cm2 上升至2.03 μC/cm2相差幅度甚小,所以證明循環壽命極佳。在對頻率的敏感度測試中使用150 kV/cm電場,從201000 Hz的儲能密度及效率僅相差3.2% 及6.5%,也說明對不同頻率的響應相差不大。在熱穩定性的測試中在100 kV/cm電場下,溫度在25ºC的儲能密度及效率僅相差4.0% 及0.8%,也說明熱穩定性很好,使得此介電陶瓷得以在高功率領域中做應用。在陶瓷電容充放電實驗中得知x=0.01的陶瓷電容在串聯200 Ω的電阻時,在100 kV/cm 的電場下在大約35 ns 即可達到最大放電電流,t0.9在100 kV/cm的電場下的放電時間僅需333ns,經由上述的實驗可以得知x=0.01可以在陶瓷電容的領域中有良好的應用潛力。

    (1-x)(0.3BiFeO3-0.7SrTiO3)-xK0.5Na0.5NbO3 (BFO-STO-xKNN, x=0–0.05) ceramics were synthesized by solid-state sintering for energy storage application. The lattice parameter of BFO-STO-xKNN decreased initially with KNN addition and then increased as x increased further. The initial decrease was explained by the reduced chemical expansion associated with oxygen vacancies, while the latter increase was caused by doping larger sizes of ionic. In contrast, the grain size of BFO-STO-xKNN initially increase due to the elimination of structural distortion caused by oxygen vacancies, while the latter decrease was due to large strain making gain growth more difficult. The samples without KNN exhibited a finite DC conductivity due to electric hopping between Fe2+ and Fe3+, while the samples with tiny KNN can obviously reduce DC conductivity. The samples with KNN exhibited slim hysteresis loops, which were useful for energy storage application. The highest recoverable energy density (Wrec) can achieved 3.20 J/cm3 and the efficiency was 88.0% with the x=0.01 samples at applied electric field of 273kV/cm. The x=0.01 samples also exhibited good thermal stability, frequency sensitivity, cycle life. The x=0.01 samples also showed fast t0.9 (333ns). This work showed x=0.01 had good potential for energy storage application.

    摘要 I Extended Abstract III 致謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 1 第一章 序論 1 1.1 介電電容之簡介 1 1.2 研究動機及目的 4 2 第二章 文獻回顧及理論基礎 7 2.1 介電理論 7 2.1.1 介電性質 7 2.1.2 極化機制 8 2.1.3 Debye與Maxwell-Wanger 模型 11 2.1.4 阻抗分析原理 17 2.2 介電電容儲能性質定義 23 2.3 SrTiO3、BiFeO3、(K0.5Na0.5)NbO3儲能特性及現況 26 3 第三章 實驗方法 31 3.1 實驗流程及樣品製備 31 3.2 分析儀器及原理 35 3.2.1 阿基米德法 35 3.2.2 X光繞射儀(X-Ray Diffractometer, XRD) 36 3.2.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 38 3.2.4 介電阻抗分析儀(Dielectric impedance analysis) 39 3.2.5 鐵電測試儀(Ferroelectric tester) 40 3.2.6 陶瓷電容充放電測試儀 42 4 第四章 結果與討論 44 4.1 (1-x)(0.3BiFeO3-0.7SrTiO3)-xK0.5Na0.5NbO3的結構與組成分析 44 4.2 介電性質及阻抗分析 51 4.2.1 BFO-STO-xKNN (x=0)的介電性質及阻抗分析 52 4.2.2 BFO-STO-xKNN (x=0.01)的介電性質及阻抗分析 57 4.3 儲能性質分析 62 4.3.1 BFO-STO-xKNN (x=00.05)的儲能性質分析 62 4.3.2 BFO-STO-xKNN (x=0.01)的儲能性質分析 66 4.4 充放電特性分析 70 5 第五章 結論 73 參考文獻 75

    [1] L. Li, P. Fan, M. Wang, N. Takesue, D. Salamon, A.N. Vtyurin, Y. Zhang, H. Tan, B. Nan, Y. Lu, Review of lead-free Bi-based dielectric ceramics for energy-storage applications, J. Phys. D: Appl. Phys., 54 (2021) 293001.
    [2] H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High‐performance dielectric ceramic films for energy storage capacitors: progress and outlook, Adv. Funct. Mater., 28 (2018) 1803665.
    [3] H. Zhang, T. Wei, Q. Zhang, W. Ma, P. Fan, D. Salamon, S.-T. Zhang, B. Nan, H. Tan, Z.-G. Ye, A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors, J. Mater. Chem. C, 8 (2020) 16648-16667.
    [4] Z. Yang, H. Du, L. Jin, D. Poelman, High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges, J. Mater. Chem. A, 9 (2021) 18026-18085.
    [5] J. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M.D. Rossell, P. Yu, L. You, C.H. Wang, C. Kuo, Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO 3, Phys. Rev. Lett., 107 (2011) 147602.
    [6] B. Deka, K.-H. Cho, BiFeO3-Based Relaxor Ferroelectrics for Energy Storage: Progress and Prospects, Materials, 14 (2021) 7188.
    [7] D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, I.M. Reaney, BiFeO3-BaTiO3: A new generation of lead-free electroceramics, Journal of advanced dielectrics, 8 (2018) 1830004.
    [8] T. Correia, M. Stewart, A. Ellmore, K. Albertsen, Lead‐Free Ceramics with High Energy Density and Reduced Losses for High Temperature Applications, Adv. Eng. Mater., 19 (2017) 1700019.
    [9] H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, J. Ma, L. Li, C.-W. Nan, BiFeO 3–SrTiO 3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance, J. Mater. Chem. A, 5 (2017) 5920-5926.
    [10] Z. Lu, G. Wang, W. Bao, J. Li, L. Li, A. Mostaed, H. Yang, H. Ji, D. Li, A. Feteira, Superior energy density through tailored dopant strategies in multilayer ceramic capacitors, Energy Environ. Sci., 13 (2020) 2938-2948.
    [11] X. Bai, Z. Chen, P. Zheng, W. Bai, J. Zhang, L. Li, F. Wen, L. Zheng, Y. Zhang, High recoverable energy storage density in nominal (0.67-x) BiFeO3-0.33 BaTiO3-xBaBi2Nb2O9 lead-free composite ceramics, Ceram. Int., 47 (2021) 23116-23123.
    [12] Z. Yu, J. Zeng, L. Zheng, A. Rousseau, G. Li, A. Kassiba, Microstructure effects on the energy storage density in BiFeO3-based ferroelectric ceramics, Ceram. Int., 47 (2021) 12735-12741.
    [13] X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO 3, Appl. Phys. Lett., 86 (2005) 062903.
    [14] S. Chu, M. Zhang, H. Deng, Z. Wang, Y. Wang, Y. Pan, H. Yan, Investigation of doping effect on electrical leakage behavior of BiFeO3 ceramics, J. Alloys Compd., 689 (2016) 475-480.
    [15] T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, BiFeO 3 ceramics: processing, electrical, and electromechanical properties, J. Am. Ceram. Soc., 97 (2014) 1993-2011.
    [16] L.-F. Zhu, X.-W. Lei, L. Zhao, M.I. Hussain, G.-Z. Zhao, B.-P. Zhang, Phase structure and energy storage performance for BiFeO3–BaTiO3 based lead-free ferroelectric ceramics, Ceram. Int., 45 (2019) 20266-20275.
    [17] D. Shi, Functional thin films and functional materials: new concepts and technologies, 清华大学出版社有限公司2003.
    [18] J.C. Burfoot, G.W. Taylor, Polar dielectrics and their applications, Univ of California Press2022.
    [19] K.C. Kao, Dielectric phenomena in solids, Elsevier2004.
    [20] E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and, Applications, 2nd ed.(Hoboken, NJ: John Wiley &Sons, Inc., 2005), (2005).
    [21] Z. Wang, M. Cao, Z. Yao, G. Li, Z. Song, W. Hu, H. Hao, H. Liu, Z. Yu, Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics, Ceram. Int., 40 (2014) 929-933.
    [22] G.-F. Zhang, H. Liu, Z. Yao, M. Cao, H. Hao, Effects of Ca doping on the energy storage properties of (Sr, Ca) TiO3 paraelectric ceramics, Journal of Materials Science: Materials in Electronics, 26 (2015) 2726-2732.
    [23] X. Kong, L. Yang, Z. Cheng, S. Zhang, Bi‐modified SrTiO3‐based ceramics for high‐temperature energy storage applications, J. Am. Ceram. Soc., 103 (2020) 1722-1731.
    [24] X. Wang, Q. Hu, L. Li, X. Lu, Effect of Pr substitution on structural and dielectric properties of SrTiO3, J. Appl. Phys., 112 (2012) 044106.
    [25] Z. Yu, C. Ang, L. Cross, Oxygen-vacancy-related dielectric anomalies in La: SrTiO 3, Appl. Phys. Lett., 74 (1999) 3044-3046.
    [26] C. Cui, Y. Pu, R. Shi, High-energy storage performance in lead-free (0.8-x) SrTiO3-0.2 Na0. 5Bi0. 5TiO3-xBaTiO3 relaxor ferroelectric ceramics, J. Alloys Compd., 740 (2018) 1180-1187.
    [27] H. Yang, F. Yan, Y. Lin, T. Wang, L. He, F. Wang, A lead free relaxation and high energy storage efficiency ceramics for energy storage applications, J. Alloys Compd., 710 (2017) 436-445.
    [28] C. Cui, Y. Pu, Z. Gao, J. Wan, Y. Guo, C. Hui, Y. Wang, Y. Cui, Structure, dielectric and relaxor properties in lead-free ST-NBT ceramics for high energy storage applications, J. Alloys Compd., 711 (2017) 319-326.
    [29] Y.H. Huang, Y.J. Wu, W.J. Qiu, J. Li, X.M. Chen, Enhanced energy storage density of Ba0. 4Sr0. 6TiO3–MgO composite prepared by spark plasma sintering, J. Eur. Ceram. Soc., 35 (2015) 1469-1476.
    [30] Y.H. Huang, Y.J. Wu, B. Liu, T.N. Yang, J.J. Wang, J. Li, L.-Q. Chen, X.M. Chen, From core–shell Ba 0.4 Sr 0.6 TiO 3@ SiO 2 particles to dense ceramics with high energy storage performance by spark plasma sintering, J. Mater. Chem. A, 6 (2018) 4477-4484.
    [31] Z. Yao, Q. Luo, G. Zhang, H. Hao, M. Cao, H. Liu, Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications, Journal of Materials Science: Materials in Electronics, 28 (2017) 11491-11499.
    [32] C. Wang, F. Yan, H. Yang, Y. Lin, T. Wang, Dielectric and ferroelectric properties of SrTiO3-Bi0. 54Na0. 46TiO3-BaTiO3 lead-free ceramics for high energy storage applications, J. Alloys Compd., 749 (2018) 605-611.
    [33] F. Yan, H. Yang, Y. Lin, T. Wang, Dielectric and ferroelectric properties of SrTiO3–Bi0. 5Na0. 5TiO3–BaAl0. 5Nb0. 5O3 lead-free ceramics for high-energy-storage applications, Inorg. Chem., 56 (2017) 13510-13516.
    [34] H. Yang, F. Yan, Y. Lin, T. Wang, Enhanced energy storage properties of Ba0. 4Sr0. 6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition, J. Eur. Ceram. Soc., 38 (2018) 1367-1373.
    [35] C. Cui, Y. Pu, X. Li, Y. Cui, G. Liu, High energy storage density of temperature-stable X9R ceramics, Mater. Res. Bull., 105 (2018) 114-120.
    [36] W.-B. Li, D. Zhou, L.-X. Pang, Structure and energy storage properties of Mn-doped (Ba, Sr) TiO3–MgO composite ceramics, Journal of Materials Science: Materials in Electronics, 28 (2017) 8749-8754.
    [37] W. Pan, M. Cao, A. Jan, H. Hao, Z. Yao, H. Liu, High breakdown strength and energy storage performance in (Nb, Zn) modified SrTiO 3 ceramics via synergy manipulation, J. Mater. Chem. C, 8 (2020) 2019-2027.
    [38] H. Yang, F. Yan, Y. Lin, T. Wang, Enhanced recoverable energy storage density and high efficiency of SrTiO3-based lead-free ceramics, Appl. Phys. Lett., 111 (2017) 253903.
    [39] H. Yang, F. Yan, Y. Lin, T. Wang, Novel strontium titanate-based lead-free ceramics for high-energy storage applications, ACS Sustainable Chem. Eng., 5 (2017) 10215-10222.
    [40] C. Cui, Y. Pu, Improvement of energy storage density with trace amounts of ZrO2 additives fabricated by wet-chemical method, J. Alloys Compd., 747 (2018) 495-504.
    [41] S.O. Leontsev, R.E. Eitel, Dielectric and piezoelectric properties in Mn‐modified (1− x) BiFeO3–xBaTiO3 ceramics, J. Am. Ceram. Soc., 92 (2009) 2957-2961.
    [42] H. Zhang, W. Jo, K. Wang, K.G. Webber, Compositional dependence of dielectric and ferroelectric properties in BiFeO3–BaTiO3 solid solutions, Ceram. Int., 40 (2014) 4759-4765.
    [43] T. Ozaki, S. Kitagawa, S. Nishihara, Y. Hosokoshi, M. Suzuki, Y. Noguchi, M. Miyayama, S. Mori, Ferroelectric properties and nano-scaled domain structures in (1-x) BiFeO3-xBaTiO3 (0.33< x< 0.50), Ferroelectrics, 385 (2009) 6155-6161.
    [44] H. Qi, A. Xie, A. Tian, R. Zuo, Superior energy‐storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3‐BaTiO3‐NaNbO3 lead‐free bulk ferroelectrics, Adv. Energy Mater., 10 (2020) 1903338.
    [45] D. Zheng, R. Zuo, D. Zhang, Y. Li, Novel BiFeO3–BaTiO3–Ba (Mg1/3Nb2/3) O3 lead‐free relaxor ferroelectric ceramics for energy‐storage capacitors, J. Am. Ceram. Soc., 98 (2015) 2692-2695.
    [46] D. Zheng, R. Zuo, Enhanced energy storage properties in La (Mg1/2Ti1/2) O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range, J. Eur. Ceram. Soc., 37 (2017) 413-418.
    [47] N. Liu, R. Liang, X. Zhao, C. Xu, Z. Zhou, X. Dong, Novel bismuth ferrite‐based lead‐free ceramics with high energy and power density, J. Am. Ceram. Soc., 101 (2018) 3259-3265.
    [48] D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, I.M. Reaney, Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density, J. Mater. Chem. A, 6 (2018) 4133-4144.
    [49] G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang, A. Feteira, D. Zhou, D.C. Sinclair, T. Ma, X. Tan, Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity, Energy Environ. Sci., 12 (2019) 582-588.
    [50] D. Wang, Z. Fan, W. Li, D. Zhou, A. Feteira, G. Wang, S. Murakami, S. Sun, Q. Zhao, X. Tan, High energy storage density and large strain in Bi (Zn2/3Nb1/3) O3-doped BiFeO3–BaTiO3 ceramics, ACS Appl. Energy Mater., 1 (2018) 4403-4412.
    [51] H. Sun, X. Wang, Q. Sun, X. Zhang, Z. Ma, M. Guo, B. Sun, X. Zhu, Q. Liu, X. Lou, Large energy storage density in BiFeO3-BaTiO3-AgNbO3 lead-free relaxor ceramics, J. Eur. Ceram. Soc., 40 (2020) 2929-2935.
    [52] Z. Chen, X. Bu, B. Ruan, J. Du, P. Zheng, L. Li, F. Wen, W. Bai, W. Wu, L. Zheng, Simultaneously achieving high energy storage density and efficiency under low electric field in BiFeO3-based lead-free relaxor ferroelectric ceramics, J. Eur. Ceram. Soc., 40 (2020) 5450-5457.
    [53] N. Liu, R. Liang, Z. Zhou, X. Dong, Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field, J. Mater. Chem. C, 6 (2018) 10211-10217.
    [54] Z. Chen, X. Bai, H. Wang, J. Du, W. Bai, L. Li, F. Wen, P. Zheng, W. Wu, L. Zheng, Achieving high-energy storage performance in 0.67 Bi1-xSmxFeO3-0.33 BaTiO3 lead-free relaxor ferroelectric ceramics, Ceram. Int., 46 (2020) 11549-11555.
    [55] Q. Li, S. Ji, D. Wang, J. Zhu, L. Li, W. Wang, M. Zeng, Z. Hou, X. Gao, X. Lu, Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors, J. Eur. Ceram. Soc., 41 (2021) 387-393.
    [56] H. Yang, H. Qi, R. Zuo, Enhanced breakdown strength and energy storage density in a new BiFeO3-based ternary lead-free relaxor ferroelectric ceramic, J. Eur. Ceram. Soc., 39 (2019) 2673-2679.
    [57] G. Wang, Z. Lu, H. Yang, H. Ji, A. Mostaed, L. Li, Y. Wei, A. Feteira, S. Sun, D.C. Sinclair, Fatigue resistant lead-free multilayer ceramic capacitors with ultrahigh energy density, J. Mater. Chem. A, 8 (2020) 11414-11423.
    [58] Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei, Z. Xu, Significantly enhanced recoverable energy storage density in potassium–sodium niobate-based lead free ceramics, J. Mater. Chem. A, 4 (2016) 13778-13785.
    [59] Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties, Nano Energy, 58 (2019) 768-777.
    [60] X. Qiao, X. Zhang, D. Wu, X. Chao, Z. Yang, Influence of Bi nonstoichiometry on the energy storage properties of 0.93 KNN–0.07 Bi x MN relaxor ferroelectrics, Journal of Advanced Dielectrics, 8 (2018) 1830006.
    [61] B. Qu, H. Du, Z. Yang, Q. Liu, T. Liu, Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering, RSC Adv., 6 (2016) 34381-34389.
    [62] Y. Li, Y. Zhen, W. Wang, Z. Fang, Z. Jia, J. Zhang, H. Zhong, J. Wu, Y. Yan, Q. Xue, Enhanced energy storage density and discharge efficiency in potassium sodium niobite-based ceramics prepared using a new scheme, J. Eur. Ceram. Soc., 40 (2020) 2357-2365.
    [63] M. Zhang, H. Yang, D. Li, L. Ma, Y. Lin, Giant energy storage efficiency and high recoverable energy storage density achieved in K 0.5 Na 0.5 NbO 3-Bi (Zn 0.5 Zr 0.5) O 3 ceramics, J. Mater. Chem. C, 8 (2020) 8777-8785.
    [64] B. Qu, H. Du, Z. Yang, Q. Liu, Large recoverable energy storage density and low sintering temperature in potassium‐sodium niobate‐based ceramics for multilayer pulsed power capacitors, J. Am. Ceram. Soc., 100 (2017) 1517-1526.
    [65] T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials, J. Mater. Chem. A, 5 (2017) 554-563.
    [66] Y.-W. Lu, X. Qi, Hydrothermal synthesis of pure and Sb-doped BiFeO3 with the typical hysteresis loops of ideal ferroelectrics, J. Alloys Compd., 774 (2019) 386-395.
    [67] H. Ke, W. Wang, Y. Wang, H. Zhang, D. Jia, Y. Zhou, X. Lu, P. Withers, Dependence of dielectric behavior in BiFeO3 ceramics on intrinsic defects, Journal of alloys and compounds, 541 (2012) 94-98.
    [68] S. Ke, P. Lin, X. Zeng, H. Huang, L.M. Zhou, Y.-W. Mai, Tuning of dielectric and ferroelectric properties in single phase BiFeO3 ceramics with controlled Fe2+/Fe3+ ratio, Ceramics International, 40 (2014) 5263-5268.
    [69] D. Oumar, M. Boukhari, M. Taha, S. Capraro, D. Piétroy, J. Chatelon, J. Rousseau, Characterization Method for Integrated Magnetic Devices at Lower Frequencies (up to 110 MHz), Journal of Electronic Testing, 35 (2019) 245-252.
    [70] N. Izyumskaya, Y.-I. Alivov, S.-J. Cho, H. Morkoç, H. Lee, Y.-S. Kang, Processing, structure, properties, and applications of PZT thin films, Critical reviews in solid state and materials sciences, 32 (2007) 111-202.
    [71] S. Vura, P.A. Kumar, A. Senyshyn, R. Ranjan, Magneto-structural study of the multiferroic BiFeO3–SrTiO3, J. Magn. Magn. Mater., 365 (2014) 76-82.
    [72] L. Li, H. Liu, G. Wen, G. Liu, Structural evolution and dielectric response of (1-x) BiFeO3-xSrTiO3 ceramics, Ceram. Int., 44 (2018) S69-S71.
    [73] D. Marrocchelli, N.H. Perry, S.R. Bishop, Understanding chemical expansion in perovskite-structured oxides, Physical Chemistry Chemical Physics, 17 (2015) 10028-10039.
    [74] C. Cazorla, Lattice effects on the formation of oxygen vacancies in perovskite thin films, Phys. Rev. Appl, 7 (2017) 044025.
    [75] R. Gerhardt, Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity, J. Phys. Chem. Solids, 55 (1994) 1491-1506.
    [76] J. Liu, C.-G. Duan, W.-G. Yin, W.-N. Mei, R.W. Smith, J.R. Hardy, Large dielectric constant and Maxwell-Wagner relaxation in Bi 2∕ 3 Cu 3 Ti 4 O 12, Physical review B, 70 (2004) 144106.
    [77] Y.-J. Siao, X. Qi, Dielectric responses in polycrystalline rare-earth iron garnets, J. Alloys Compd., 691 (2017) 672-682.
    [78] S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimnirun, S. Maensiri, Dielectric relaxations and dielectric response in multiferroic BiFeO 3 ceramics, Appl. Phys. Lett., 94 (2009) 062904.
    [79] Y. Liu, X. Chen, X. Liu, L. Li, Giant dielectric response and relaxor behaviors induced by charge and defect ordering in Sr (Fe 1∕ 2 Nb 1∕ 2) O 3 ceramics, Appl. Phys. Lett., 90 (2007) 192905.
    [80] R. Grigalaitis, J. Banys, A. Dziaugys, A. Brilingas, A. Sternberg, V. Zauls, K. Bormanis, Broad distribution of relaxation times in 0.6 PMN-0.4 PZN relaxor ceramics, Ferroelectrics, 353 (2007) 3-9.
    [81] D. Adamchuk, R. Grigalaitis, S. Svirskas, J. Macutkevic, E. Palaimiene, J. Banys, L. Mitoseriu, G. Canu, M. Buscaglia, V. Buscaglia, Distributions of relaxation times in relaxor ferroelectric Ba (Ti0. 8 Ce0. 2) O3, Ferroelectrics, 553 (2019) 103-110.
    [82] P. Keburis, J. Banys, J. Grigas, A. Brilingas, T. Burtilius, A.N. Salak, V.M. Ferreira, Dielectric properties of BT–LMT mixed ceramics, J. Eur. Ceram. Soc., 27 (2007) 4367-4370.
    [83] A.K. Jonscher, Dielectric relaxation in solids, J. Phys. D: Appl. Phys., 32 (1999) R57.
    [84] W. Cao, R. Gerhardt, Calculation of various relaxation times and conductivity for a single dielectric relaxation process, Solid State Ionics, 42 (1990) 213-221.
    [85] C.-J. Chang, X. Qi, Dielectric relaxation and high recoverable energy density in (1-x)(0.3 BiFeO3-0.7 SrTiO3)-xK0. 5Na0. 5NbO3 ceramics, Ceram. Int., (2022).
    [86] Z. Cai, X. Wang, W. Hong, B. Luo, Q. Zhao, L. Li, Grain‐size–dependent dielectric properties in nanograin ferroelectrics, J. Am. Ceram. Soc., 101 (2018) 5487-5496.
    [87] L. Haddour, N. Mesrati, D. Goeuriot, D. Tréheux, Relationships between microstructure, mechanical and dielectric properties of different alumina materials, J. Eur. Ceram. Soc., 29 (2009) 2747-2756.
    [88] Z. Song, H. Liu, H. Hao, S. Zhang, M. Cao, Z. Yao, Z. Wang, W. Hu, Y. Shi, B. Hu, The effect of grain boundary on the energy storage properties of (Ba 0.4 Sr 0.6 M) TiO 3 paraelectric ceramics by varying grain sizes, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62 (2015) 609-616.
    [89] Z. Yang, Y. Gu, F. Zhang, Z. Liu, Y. Li, Improved dielectric breakdown strength of Dy doped (Ba0. 97Ca0. 03)(Ti0. 98Mg0. 02) O3 ceramics with nanosized grains, physica status solidi (a), 214 (2017) 1700149.
    [90] F. Yan, Y. Shi, X. Zhou, K. Zhu, B. Shen, J. Zhai, Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications, Chemical Engineering Journal, 417 (2021) 127945.
    [91] G. Liu, M. Tang, X. Hou, B. Guo, J. Lv, J. Dong, Y. Wang, Q. Li, K. Yu, Y. Yan, Energy storage properties of bismuth ferrite based ternary relaxor ferroelectric ceramics through a viscous polymer process, Chemical Engineering Journal, 412 (2021) 127555.
    [92] M. Wang, A. Xie, J. Fu, R. Zuo, Energy storage properties under moderate electric fields in BiFeO3-based lead-free relaxor ferroelectric ceramics, Chemical Engineering Journal, 440 (2022) 135789.
    [93] W. Wang, X.-G. Tang, Y.-P. Jiang, Q.-X. Liu, W.-H. Li, X.-B. Guo, Z.-H. Tang, Modified relaxor ferroelectrics in BiFeO3-(Ba, Sr) TiO3-BiScO3 ceramics for energy storage applications, Sustainable Mater.Technol., 32 (2022) e00428.
    [94] D. Wang, J. Zhu, Z. Liu, A. Zhang, C. Wang, C.M. Leung, X. Gao, X. Lu, M. Zeng, Enhanced energy storage performance in (1-x) Bi0. 85Sm0. 15FeO3-xCa0. 5Sr0. 5Ti0. 9Zr0. 1O3 relaxor ceramics, J. Alloys Compd., (2022) 163888.
    [95] J. Zhao, S. Bao, L. Tang, Y. Shen, Z. Su, F. Yang, J. Liu, Z. Pan, Improved energy storage performances of lead-free BiFeO3-based ceramics via doping Sr0. 7La0. 2TiO3, J. Alloys Compd., 898 (2022) 162795.
    [96] W. Wang, K. Meng, P.-Z. Ge, X.-G. Tang, Q.-X. Liu, Y.-P. Jiang, Paraelectric Matrix-Tuned Energy Storage in BiFeO3–BaTiO3–SrTiO3 Relaxor Ferroelectrics, ACS Appl. Energy Mater., 4 (2021) 9216-9226.
    [97] L. Hai, H. Liu, Effects of Mn doping on electrical properties of BiFeO3–SrTiO3 solid solution, Solid State Commun., (2022) 114652.
    [98] M. Tang, L. Yu, Y. Wang, J. Lv, J. Dong, B. Guo, F. Chen, Q. Ai, Y. Luo, Q. Li, Dielectric, ferroelectric, and energy storage properties of Ba (Zn1/3Nb2/3) O3-modfied BiFeO3–BaTiO3 Pb-Free relaxor ferroelectric ceramics, Ceram. Int., 47 (2021) 3780-3788.
    [99] Y. Sun, H. Liu, F. Liu, G. Liu, Dielectric and electrical energy storage properties of BiFeO3–BaTiO3–SrTiO3 ternary bulk ceramics, Journal of Materials Science: Materials in Electronics, 32 (2021) 21188-21196.
    [100] X. Li, L. Luo, C. Xu, X. Tang, Z. Nie, W. Zhao, Structural and multiferroic properties of Nd and Mn co-doped 0.55 BiFeMnO3-0.45 BaTiO3 ceramics with high energy storage efficiency, Ceram. Int., 47 (2021) 18800-18807.
    [101] H. Tang, X. Niu, P.-F. Zhao, X.-G. Tang, X.-D. Jian, X.-Y. Chen, X.-C. Peng, Z.-P. Yang, S.-G. Lu, Large energy-storage density and positive electrocaloric effect in x BiFeO 3–(1− x) BaTiO 3 relaxor ferroelectric ceramics, J. Mater. Chem. C, (2022).
    [102] S.A. Khan, T. Ahmed, J. Bae, S.Y. Choi, M. Kim, R.A. Malik, T.-K. Song, M.-H. Kim, S. Lee, Lead-free high-temperature dielectrics with wide temperature stability range induced from BiFeO3-BaTiO3-based system, J. Eur. Ceram. Soc., 42 (2022) 4040-4044.
    [103] R. Xu, J. Tian, Q. Zhu, Y. Feng, X. Wei, Z. Xu, Effect of temperature-driven phase transition on energy-storage and-release properties of Pb0. 97La0. 02 [Zr0. 55Sn0. 30Ti0. 15] O3 ceramics, J. Appl. Phys., 122 (2017) 024104.
    [104] N. Sun, Y. Li, Q. Zhang, X. Hao, Giant energy-storage density and high efficiency achieved in (Bi 0.5 Na 0.5) TiO 3–Bi (Ni 0.5 Zr 0.5) O 3 thick films with polar nanoregions, J. Mater. Chem. C, 6 (2018) 10693-10703.
    [105] X. Liu, Y. Li, X. Hao, Ultra-high energy-storage density and fast discharge speed of (Pb 0.98− x La 0.02 Sr x)(Zr 0.9 Sn 0.1) 0.995 O 3 antiferroelectric ceramics prepared via the tape-casting method, J. Mater. Chem. A, 7 (2019) 11858-11866.

    下載圖示 校內:2025-08-25公開
    校外:2025-08-25公開
    QR CODE