簡易檢索 / 詳目顯示

研究生: 施旻佑
Shih, Min-Yu
論文名稱: 高功率脈衝磁控濺鍍類鑽碳與氮化鈦鍍層於不同脈衝功率與氬氣、氮氣通量之機械與磨潤性質研究
Effect of Pules Power , Argon and Nitrogen flux on Mechanical and Tribological Properties of DLC and TiN coatings used HiPIMS Technology
指導教授: 蘇演良
Su, Yean-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 74
中文關鍵詞: 類鑽碳鍍層氮化鈦鍍層脈衝功率氬氣與氮氣流量機械與磨潤性質
外文關鍵詞: HiPIMS, Diamond-like Carbon, Tungsten carbide, micro-drill, Wear
相關次數: 點閱:143下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以HiPIMS濺鍍技術沉積類鑽碳、氮化鈦鍍層,改變脈衝功率以及氬氣、氮氣的流量作為變化的參數,藉此探討不同參數下對於類鑽碳、氮化鈦鍍層的機械與磨潤性質之影響,其次,可以分別獲得具有最佳機械與磨潤性質的類鑽碳、氮化鈦鍍層參數,最後,將此鍍層參數以直流磁控濺鍍法沉積類鑽碳、氮化鈦鍍層,並且分別比較兩種技術之間的各項性質差異。
    以類鑽碳鍍層為例,脈衝功率為5 kW的鍍層具有較高的C-C sp3鍵結比例,也因此相較於其他脈衝功率的鍍層有著較高的硬度,其中脈衝功率為5 kW、氬氣流量為80 sccm的鍍層(C80/5)硬度更是高達24.95 GPa;與AISI 52100球對磨後,類鑽碳鍍層幾乎都有很低的摩擦係數、磨耗深度以及磨耗率,其中,脈衝功率為5 kW、氬氣流量為80 sccm的鍍層(C80/5)在各項磨耗標準都有最佳的磨潤性質,以磨耗率為例,相對於原材在荷重6、10、14N分別可以改善45.9、26.3以及24.1倍,因此,本研究也選擇此鍍層參數並以直流磁控濺鍍法沉積類鑽碳鍍層作為比較。
    以氮化鈦鍍層為例,脈衝功率為5 kW的鍍層一樣相較於其他脈衝功率的鍍層有著較高的硬度,除此之外,若是單純就氬氣佔總流量比來看,隨著氬氣佔總流量比的降低,鍍層硬度也會跟著降低,其中,脈衝功率為5 kW、氬氣佔總流量比為40%的鍍層(T40/5)硬度雖然不是最高,但是也有高達29.6 GPa;與AISI 52100球對磨後,氮化鈦鍍層僅有少部分鍍層具有較低的磨耗深度以及磨耗率,其中,脈衝功率為5 kW、氬氣佔總流量比為40%的鍍層(T40/5)更是有最佳的磨潤表現,因此,在經過綜合的評估,本研究也選擇此鍍層參數並以直流磁控濺鍍法沉積類鑽碳鍍層作為比較。

    Impulse power and gas flux are the common parameters when coatings or micro-drills are deposited by HiPIMS. In this study, it can be investigated that different impulse power or gas flux would cause DLC coatings deposited by HiPIMS to have positive or negative influence in terms of mechanical and tribological properties. The Raman spectroscopy was used in chemistry to identify chemical bonding of DLC coatings. The Nanoindentation and scratch tester was used to measure the hardness and decide the adhesion of DLC coatings, respectively. The ball-on-disk rotating-sliding wear tester was used to investigate tribological properties of DLC coatings. In general, coatings with high impulse power was regarded as the best coating with outstanding properties, including mechanical and tribological properties. In this study, it can be proven appropriate impulse power would attain better mechanical and tribological properties. In addition, the best parameter of DLC coating was chosen to deposite on micro-drills. Micro-drill deposited DLC coating can be test life by high-speed drilling test and thereby evaluate its application in the industry.

    總目錄 口試合格證明 I 摘要 II SUMMARY III 誌謝 IX 總目錄 X 表目錄 XII 圖目錄 XIII 第1章 緒論 1 1-1前言 1 第2章 文獻回顧 4 2-1 國外HiPIMS發展與研究概況 4 2-2 國內HiPIMS發展與研究概況 5 2-3 類鑽碳鍍層 6 2-4氮化鈦鍍層 6 2-5 研究目標 7 第3章 實驗方法與步驟 8 3-1 實驗目的 8 3-2 實驗流程 8 3-3試片準備與鍍層參數、設備安排 11 3-3-1試片準備 11 3-3-2鍍層參數安排 11 3-3-3實驗與分析設備 13 第4章 實驗結果與討論 15 4-1 類鑽碳鍍層 15 4-1-1 類鑽碳鍍層之鍍層結構與化學組成 15 4-1-2 類鑽碳鍍層之機械性質 20 4-1-3 類鑽碳鍍層之磨潤性質 23 4-1-4 類鑽碳鍍層之微鑽針壽命 40 4-2 氮化鈦鍍層 46 4-2-1 氮化鈦鍍層之鍍層結構與化學組成 46 4-2-2 氮化鈦鍍層之機械性質 51 4-2-3 氮化鈦鍍層之磨潤性質 53 第5章 結論 66 5-1類鑽碳鍍層 66 5-2氮化鈦鍍層 66 第6章 參考文獻 68

    [1] Donald M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing 2nd Edition, 2010.
    [2] Monica Costa Rodrigues Guimaraes, Bruno César Noronha Marques de Castilho, Tamires de Souza Nossa, Pedro Renato Tavares Avila, Silvia Cucatti, Fernando Alvarez, Jose Luis Garcia, Haroldo Cavalcanti Pinto, On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS, Surface and Coatings Technology, Vol 340 (2018) p.112-120.
    [3] L.C. Chen, D.M. Bhusari, C.Y. Yang, et al., Si-containing crystalline carbon nitride derived from microwave plasma-enhanced chemical vapor deposition, Thin solid films, Vol 303(1997) p.66-75.
    [4] M.M.Stack,Y. Purandare, P. Hovsepian, Impact angle effects on the erosion–corrosion of superlattice CrN/NbN PVD coatings, Surface and Coatings Technology, Vol 188、189 (2004) p.556-565.
    [5] Y. Purandare, M. M.Stack, P. Hovsepian, A study of the erosion–corrosion of PVD CrN/NbN superlattice coatings in aqueous slurries, Wear, Vol 259 (2005) p.256-262.
    [6] T. Ono, M. Uemura, M. Yatsuzuka, Adhesion improvement of TiN film on tool steel by a hybrid process of unbalanced magnetron sputtering and plasma-based ion implantation, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol 257 (2007) p.786-789.
    [7] D. Martínez-Martínez, J.C. Sánchez-López, T.C. Rojas, A. Fernández, P. Eaton, M. Belin, Structural and microtribological studies of Ti–C–N based nanocomposite coatings prepared by reactive sputteri, Thin Solid Films, Vol 472 (2005) p.64-70.
    [8] Kenji Yamamoto, Katsuhiro Matsukado, Effect of hydrogenated DLC coating hardness on the tribological properties under water lubrication, Tribology International, Vol 39 (2006) p.1609-1614.
    [9] Tomoyuki Kamata, Dai Kato, Hideo Ida, Osamu Niwa, Structure and electrochemical characterization of carbon films formed by unbalanced magnetron (UBM) sputtering method, Diamond and Related Materials, Vol 49 (2014) p.25-32.
    [10] W. Siriprom, C. Chananonnawathorn, S. Kongsriprapan, K. Teanchai, Herman, M. Horprathum, Preparation and characterization of CrN thin film by DC reactive magnetron sputtering, Materialstoday: Proceedings, Vol 5 (2018) p.15224-15227.
    [11] Vladimir Kouznetsov, Karol Macák, Jochen M. Schneider, UlfHelmersson, Ivan Petrov, A novel pulsed magnetron sputter technique utilizing very high target power densities, Surface and Coatings Technology, Vol 122 (1999) p.290-293.
    [12] Hasan Elmkhah, Faridreza Attarzadeh, Arash Fattah-alhosseini, Kwang Ho Kim, Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques, Journal of Alloys and Compounds, Vol 735 (2018) p.422-429.
    [13] A. Ferrec, J.Keraudy, S. Jacq, F. Schuster, P.-Y. Jouan, M.A. Djouadi, Correlation between mass-spectrometer measurements and thin film characteristics using dcMS and HiPIMS discharges, Surface and Coatings Technology, Vol 250 (2014) p.52-56.
    [14] K. Bobzin, T. Brögelmann, N.C. Kruppe, M.Engels, Influence of dcMS and HPPMS in a dcMS/HPPMS hybrid process on plasma and coating properties, Thin Solid Films, Vol 620 (2016) p.188-196.
    [15] N. Bagcivan, K. Bobzin, A. Ludwig, D.Grochla, R.H. Brugnara, CrN/AlN nanolaminate coatings deposited via high power pulsed and middle frequency pulsed magnetron sputtering, Thin Solid Films, Vol 572 (2014) p.153-160.
    [16] Mattias Samuelsson, Daniel Lundin, Jens Jensen, Michael A. Raadu, Jon Tomas Gudmundsson, Ulf Helmersson, On the film density using high power impulse magnetron sputtering, Surface and Coatings Technology, Vol 205 (2010) p.591-596.
    [17] Q. Luo, S. Yang, K.E. Cooke, Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties, Surface and Coatings Technology Vol 236 (2013) p.13-21.
    [18] Sami Rtimi, Cesar Pulgarin, John Kiwi, Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light, Coatings, Vol 7(2) (2017) p.20
    [19] J.A. Santiago, I. Fernández-Martínez, A. Wennberg, J.M. Molina-Aldareguia, M. Castillo-Rodríguez, T.C. Rojas, J.C.Sánchez-López, M.U. González, J.M. García-Martín, H. Li, V. Bellido-González, M.A. Monclús, R.González-Arrabal, Adhesion enhancement of DLC hard coatings by HiPIMS metal ion etching pretreatment, Surface and Coatings Technology, Vol 349 (2018) p.787-796
    [20] Jake McLain, Priya Raman, Dhruval Patel, Randall Spreadbury, Jan Uhlig, Ivan Shchelkanov, D.N. Ruzic, Linear magnetron HiPIMS high deposition rate magnet pack, Vacuum, Vol 155 (2018) p.559-565
    [21] J. Vetter, K. Kubota, M. Isaka, J. Mueller, T. Krienke, H.Rudigier, Characterization of advanced coating architectures deposited by an arc-HiPIMS hybrid process, Surface and Coatings Technology, Vol 350 (2018) p.154-160
    [22] H. Hajihoseini, M. Kateb, S. Ingvarsson, J.T. Gudmundsson, Effect of substrate bias on properties of HiPIMS deposited vanadium nitride films, Thin Solid Films, Vol 663 (2018) p.126-130
    [23] Vasile Tiron, Ioana-LauraVelicu, Iulian Pana, Daniel Cristea, Bogdan George Rusu, Paul Dinca, Corneliu Porosnicu, Eduard Grigore, Daniel Munteanu, Sorin Tascu, HiPIMS deposition of silicon nitride for solar cell application, Surface and Coatings Technology, Vol 344 (2018) p.197-203.
    [24] J.C. Sánchez-López, S.Dominguez-Meister, T.C. Rojas, M.Colasuonno, M. Bazzan, A.Patelli, Applied Surface Tribological properties of TiC/a-C:H nanocomposite coatings prepared via HiPIMS, Science, Vol 440 (2018) p.458-466.
    [25] 吳錦裕、梁文龍、艾啟峰,真空科技,Vol 22 (2009) p.24-33.
    [26] 許喬智,高功率脈衝磁控濺鍍製備銀金屬抗菌薄膜於纖維布,逢甲大學材料科學所,碩士論文,2012。
    [27] 蕭雨喬,HIPIMS鍍膜系統之特性研究-以TiN為例,國立臺北科技大學材料科學與工程研究所,碩士論文,2012。
    [28] 石登元,HIPIMS鍍製HfO2氧化層之MIM電容的鐵電量測,國立臺灣師範大學機電工程學系,碩士論文,2016。
    [29] 楊偉仁,以直流磁控及高功率脈衝磁控濺鍍之TiO2光觸媒薄膜的特性分析比較,國立交通大學 機械工程學系,博士論文,2013。
    [30] 工業技術研究院-石墨材表面功能性鍍層技術
    [31] 陳柏任,以高功率脈衝磁控濺鍍法製備氮化鋯阻障層於金屬閘極金氧半結構之特性研究,亞洲大學光電與通訊學系,碩士論文,2014。
    [32] 蘇政揚,調控脈衝電壓及脈衝波間隔時間對高功率脈衝磁控濺鍍系統製備氮化鈦薄膜性質研究,國立清華大學工程與系統科學系,碩士論文,2011。
    [33] 劉得權,高功率脈衝磁控濺鍍磊晶生長立方晶氮化鋁於鋁金屬,逢甲大學材料科學與工程學系,碩士論文,2015。
    [34] 張靜光,利用高功率脈衝直流磁控濺鍍製備鋁摻雜氧化鋅之透明導電薄膜,明志科技大學材料工程系碩士班,碩士論文,2014。
    [35] A. Leonhardt, H. Gruger, D. Selbmann, et al., Preparation of CNx-phases using plasma-assisted and hot filament chemical vapour deposition, Thin Solid Films, Vol 332 (1998) p.69-73.
    [36] Lei Wang, Liuhe Li, Xiaocong Kuang, Surface and Coatings Technology, Vol 352 (2018) p.33-41
    [37] Morten S. Jellesen, Thomas L. Christiansen, Lisbeth Rischel Hilbert, Per Moller, Erosion–corrosion and corrosion properties of DLC coated low temperature gas-nitrided austenitic stainless steel, Wear, Vol 267 (2009) p.1709-1714
    [38] R. Olivares, S.E. Rodilb, H. Arzate, In vitro studies of the biomineralization in amorphous carbon films, Surf. Coat. Technol., Vol 177-178 (2004) p.758-764
    [39] T. Michler, M. Grischke, I. Traus, K. Bewilogua, H. Dimigen, Diamond and Related Materials, Vol 7 (1998) p.1333-1337
    [40] Gabriela Leal, Guilherme Wellingthon Alves Cardoso, Argemiro Soares da Silva Sobrinho, Marcos Massi, Procedia Engineering, Vol 87 (2014) p.120-123
    [41] Zhen Xu, Zaoli Zhang, Matthias Bartosik, Yong Zhang, Paul H.Mayrhofer, Yunbin He, Insight into the structural evolution during TiN film growth via atomic resolution TEM, Journal of Alloys and Compounds, Vol 754 (2018) p.257-267
    [42] H.Baránková, L.Bardos, K.Silins, A.Bardos, Reactive deposition of TiN films by magnetron with magnetized hollow cathode enhanced target, Vacuum, Vol 152 (2018) p.123-127
    [43] Xingguo Feng, Yanshuai Zhang, Hanjun Hu, Yugang Zheng, Kaifeng Zhang, Hui Zhou, Comparison of mechanical behavior of TiN, TiNC, CrN/TiNC, TiN/TiNC films on 9Cr18 steel by PVD, Applied Surface Science, Vol 422 (2017) p.266-272
    [44] Homayoun Jafari, Bahram Abedi Ravan, Mahdi Faghihnasiri, Mechanical and electronic properties of single-layer TiN and AlN under strain, Solid State Communications, Vol 282 (2018) p.21-27
    [45] M.A.Domínguez-Crespo, A.M.Torres-Huerta, E.Rodríguez, A.González-Hernández, S.B.Brachetti-Sibaja, H.J.Dorantes-Rosales, A.B.López-Oyama, Effect of deposition parameters on structural, mechanical and electrochemical properties in Ti/TiN thin films on AISI 316L substrates produced by r. f. magnetron sputtering, Journal of Alloys and Compounds, Vol 746 (2018) p.688-698
    [46] K.Shukla, R.Rane, J.Alphonsa, P.Maity, S.Mukherjee, Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L, Surface and Coatings Technology, Vol 324 (2017) p.167-174
    [47] Hongjian Zhao, Pengbo Mi, Fuxing Ye, Compared the oxidation behavior of TiN and TiN/W2N ceramic coatings during heat treatment, Materials Chemistry and Physics, Vol 217 (2018) p.445-450
    [48] Zhen Yan, Dong Jiang, Xiaoming Gao, Ming Hu, Desheng Wang, Yanlong Fu, Jiayi Sun, Dapeng Feng, Lijun Weng, Friction and wear behavior of TiN films against ceramic and steel balls, Tribology International, Vol 124 (2018) p.61-69
    [49] Bing Li, Fei Sun, Qizhou Cai, Jingfan Cheng, Bingyi Zhao, Effect of TiN nanoparticles on microstructure and properties of Al2024-TiN nanocomposite by high energy milling and spark plasma sintering, Journal of Alloys and Compounds, Vol 726 (2017) p.638-650
    [50] H.Baránková, L.Bardos, K.Silins, A.Bardos, Reactive deposition of TiN films by magnetron with magnetized hollow cathode enhanced target, Vacuum, Vol 152 (2018) p.123-127
    [51] Wen-Hsien Kao, Yean-Liang Su, Jeng-Haur Horng and Yun-Ting Hsieh, Improved tribological properties, electrochemical resistance and biocompatibility of AISI 316L stainless steel through duplex plasma nitriding and TiN coating treatment, Journal of Biomaterials Applications, Vol 32 (2017) p.12-27
    [52] W.H. Kao, Y.L. Su, and Y.T. Hsieh, Effects of Duplex Nitriding and TiN Coating Treatment on Wear Resistance, Corrosion Resistance and Biocompatibility of Ti6Al4V Alloy, Journal of Materials Engineering and Performance, Vol 26 (2017) p.3686-3697
    [53] J. Robertson, Diamond-like amorphous carbon, Mater. Sci. Eng. R. Rep. Vol 37 (2002), p.129-281
    [54] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, Vol 61 (2000) p.14095
    [55] C. Casiraghi, A. C. Ferrari, and J. Robertson, Raman spectroscopy of hydrogenated amorphous carbons, Phys. Rev. B, Vol 72 (2005) p. 085401
    [56] Jianliang Lin, William D.Sproul, Ronghua Wei, Roman Chistyakov, Diamond like carbon films deposited by HiPIMS using oscillatory voltage pulses, Surf. Coat. Tech., Vol 258 (2014) p.1212-1222
    [57] Wahyu Diyatmika, Fei-Ke Liang, Bih-Show Lou, Jong-Hong Lu, De-En Sun, Jyh-Wei Lee, Superimposed high power impulse and middle frequency magnetron sputtering: Role of pulse duration and average power of middle frequency, Surf. Coat. Tech. Vol 352 (2018) p.680-689
    [58] A Leyland, A Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear, Vol 246 (2000) p.1-11
    [59] Yan Hao, Xiying Zhou, Jiajia Shao, Yukun Zhu, The influence of multiple fillers on friction and wear behavior of epoxy composite coatings, Surface and Coatings Technology,
    Vol 362 (2019), p.213-219
    [60] Wan-Yu Wu, Man-Yee Chan, Yu-Hsuan Hsu, Guan-Zhen Chen, Shu-Chuan Liao, Cheng-Hung Lee, Ping-Wing Lui, Bioapplication of TiN thin films deposited using high power impulse magnetron sputtering, Surface and Coatings Technology, Vol 362 (2019) p.167-175
    [61] H.Baránková, L.Bardos, K.Silins, A.Bardos, Reactive deposition of TiN films by magnetron with magnetized hollow cathode enhanced target, Vacuum, Vol 152 (2018) p.123-127.

    下載圖示 校內:2020-12-31公開
    校外:2020-12-31公開
    QR CODE